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Alzheimer’s disease (AD) is suggested to be a heterogeneous disorder, but limited studies explore the hetero-
geneity of the Mild Cognitive Impairment (MCI) stage. This study aimed to tackle such problems using the CIMLR
(Cancer Integration via Multikernel Learning) algorithm to cluster brain structural features extracted from T1-
weighted Magnetic Resonance Images of MCI patients from Alzheimer’s Disease Neuroimaging Initiative. The
demographic and cognitive results, characteristics of brain structural features, plasma biomarkers, and longi-
tudinal cognitive trajectory were analyzed for each cluster. The CIMLR clustering analysis revealed four distinct
clusters. Cluster 1 is the oldest group but has had mild atrophy and moderate progression with elevated Tumor
Necrosis Factor Receptor 2 level; and low Brain-Derived Neurotrophic Factor and CD40 Ligand levels. Cluster 2
showed the highest risk for aggressive MCI progression, with abnormal Leptin, Adiponectin, and Creatine kinase-
MB values. Cluster 3 exhibited a low level of Monokine Induced by Gamma Interferon and mild atrophy that
shared similar patterns with Cluster 1. Cluster 4 represented the healthiest group during longitudinal tracking,
with the mildest Parahippocampal atrophy, which was found to be positively correlated with cognitive
impairment and amino acid levels. The longitudinal analyses showed the potential of Hepatocyte Growth Factor
as a marker for slow cognitive impairment; Cortisol and Neurofilament Light Polypeptide as prognosis markers
for aggressive MCI progression. These findings may lay out new suggestions for further research contributing to
the accurate diagnosis and precision medicine for dementia and AD.

1. Introduction that have examined the heterogeneous characteristics of the MCI pop-

ulation, with most research focusing on the AD stage [2,7-9]. Secondly,

Alzheimer’s Disease (AD) is a heterogeneous disorder with high di-
versity in demographics, progressive rate, brain atrophy phenotypes,
and other characteristics [1-6]. It is crucial to acknowledge that current
treatments are unable to reverse brain atrophy in the advanced stage of
AD. Therefore, understanding the heterogeneity at the early stage of the
disease, known as Mild Cognitive Impairment (MCI), can help to facil-
itate the drug development process and establish improved disease
management strategies for the patients.

In studying heterogeneity using computational methods, cluster
analysis is widely used; however, it has certain limitations when applied
to investigating AD characteristics. Firstly, there is a scarcity of studies

most clustering studies analyzed the heterogeneity in three types of
patients simultaneously: the cognitively normal, MCI, and AD patients
[10-13]. Consequently, the resulting clusters comprise individuals from
all three groups, making it challenging to identify unique characteristics
specific to the early stages of disease development and the potential
development of diagnostic biomarkers. The third issue is that several
studies investigating the heterogeneity of MCI encountered an excessive
number of clusters, which hinders further characterization of each
cluster [11]. Therefore, employing a new approach that can overcome
mentioned limitations to study the MCI stage’s heterogeneity effectively
is crucial.
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Clustering studies for AD commonly employ Magnetic Resonance
Imaging (MRI) due to its rich and extensive data information. Specif-
ically, MRI allows for visualizing the brain’s structure at the voxel level,
providing a clear representation of brain atrophy, indicative of a pro-
gressive neuronal loss in AD. This information provides insights into the
heterogeneous patterns of atrophy observed in AD patients. Besides the
structural brain imaging markers, most current clustering research on
AD patients concentrated on studying protein markers derived from
cerebrospinal fluid (CSF), including tau, phosphorylated-tau, and Beta-
Amyloid (AB) [4,13,14]. These studies confirmed the heterogeneity of
the proteins within AD patients; however, CSF proteins have limited
clinical utility due to their high costs, invasiveness, need for well-trained
practitioners for sample collection, and poor accessibility in remote
areas. In contrast, blood-based biomarkers are promising alternatives
due to their convenience in sample collection with minimal invasion,
low cost, and high time effectiveness. Notably, by utilizing the clustering
method on the plasma protein data of CN, MCI, and AD patients,
blood-based proteins were suggested to be heterogeneous [15]. How-
ever, four clusters from the mentioned study still contain a mixture of
three diagnostic groups of patients (CN, MCI, and AD), which is chal-
lenging to identify specific biomarkers for prognostic and early diag-
nosis. Therefore, it is crucial to explore the heterogeneity of plasma
proteins, specifically among MCI patients, to gain a comprehensive
understanding of this population. This knowledge will contribute to
unraveling the underlying mechanisms related to heterogeneity and its
relationship to brain atrophy patterns, proposing new insights and
promising applicable biomarkers of high-risk populations.

Studying the heterogeneity of the mild cognitive impairment (MCI)
population only at a single time point, usually at baseline, provides a
limited view of the complex and varied trajectories of disease progres-
sion. Meanwhile, the longitudinal analysis enables capturing the long-
term trends and progression of the disease and identifying the distinct
characteristics of high-risk individuals with aggressive progression.
Existing studies mostly categorized the MCI population into two sub-
groups: cMCI (converted-MCI who converted to AD within 36 months)
and sMCI (stable-MCI who did not convert to AD within 36 months)
[16]. However, this classification does not capture the full spectrum of
disease progression, as evidenced by studies demonstrating varied pat-
terns in cognitive performance, brain regions, and CSF protein across
different patient groups [11,17]. This indicates the limitation of solely
relying on cMCI and sMCI to represent high-risk populations adequately.
Therefore, it is crucial to study the heterogeneity of MCI longitudinally.
Additionally, current longitudinal studies on the heterogeneity of MCI
mainly focused on cognitive declines, common brain regions such as the
hippocampus, and common CSF biomarkersrs [4,14,18-21]. This limi-
tation leads to the need to expand the scope of longitudinal analysis to
changes in additional brain regions beyond the hippocampus and
explore new biomarker variations such as plasma protein. This new way
of research allows diving deeper into the relationship among those
characteristics is essential for identifying new prognostic markers.

In this study, we aimed to apply an advanced clustering method to
investigate the heterogeneity in the MCI stage using brain features
extracted from MRIs at the baseline as the input data. Then, a multi-
modal analysis was conducted to identify the demographics, impor-
tant brain characteristics, and plasma protein characteristics of each
cluster at the baseline. Finally, to gain insights into the relationship
between important brain characteristics, cognitive performance, and
plasma protein levels, longitudinal analyses were applied to study the
long-term changes. Our longitudinal analysis will track the changes in
brain atrophy and cognitive function over 36 months, aiming to provide
a comprehensive view of MCI progression and propose new biomarkers
for prognosis.
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2. Materials and methods
2.1. Data description

The data used for this study were retrieved from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI), which is available at www.
loni.ucla.edu/ADNI. ADNI is a common longitudinal and multi-site
database for AD. It was launched in 2003 and led by Principal Investi-
gator Michael W. Weiner, MD. The main goal of ADNI was to investigate
the role of serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical and neuro-
psychological assessment in studying the progression of mild cognitive
impairment (MCI) and early Alzheimer’s disease (AD).

2.1.1. Subjects

Subjects selected for this study had to be diagnosed as MCI at base-
line and have their blood biomarker information and longitudinal in-
formation (MRI and cognitive scores) available on the ADNI database.
The final data comprised 359 subjects with MCI at baseline, including
167 cMCI subjects and 192 sMCI subjects. The demographic information
of the study cohort at baseline is summarized in Table 1.

2.1.2. MR images

Imaging data used in this study were the T1-weighted MR scans with
the MP-RAGE sequences of MCI subjects from ADNI 1 and ADNI GO/2.
These images were obtained at four different time points, including the
baseline (the first visit of patients, with n = 359), month 12th (n = 317),
month 24th (n = 257), and month 36th (n = 200). Various models of MR
scanners were used for the MRI acquisition, and details of the acquisition
protocol for the MRI data can be found on ADNI's website (http://adni.
loni.usc.edu).

2.1.3. Plasma biomarkers

In the beginning, 234 plasma markers from four Biospecimen Dataset
from ADNI were pre-selected for this study, including 190 plasma bio-
markers, plasma NFL, plasma Ap proteins 40 and 42, and 41 amino
acids. The methods and protocols used to measure these plasma markers
are described in “Biomarkers Consortium Plasma Proteomics Project
RBM Multiplex”, “Blennow Lab ADNI1-2 Plasma neurofilament light
(NFL) longitudinal (ADNI1, GO, 2)”, “ADMC Duke Biocrates P180 Kit
Ultra Performance Liquid Chromatography (ADNI1)”, and “UPENN
Plasma Biomarker Data” (available at http://adni.loni.ucla.edu). After
removing missing values, the final sample comprised 191 plasma
markers.

2.2. Study design

The overview of the study design is illustrated in Fig. 1. Firstly, the
sMRIs of 359 MCI subjects are pre-processed with Freesurfer to extract
310 brain structural features (including 106 vol features, 68 area fea-
tures, 68 thickness features, and 68 mean curvature features). Those 310
features are then normalized in the range from O to 1, which were the

Table 1
Demographic information of 359 MCI subjects recruited from ADNI. Data is
illustrated as mean + standard deviation or number/number.

cMCI sMCI Total
N 167 192 359
Gender (M/F) 101/66 128/64 229/130
Age 74.6 £7.5 749 £7 74.8 £7.3
Education 15.7 £ 2.9 15.5 + 3.2 15.6 + 3.1
MMSE 26.6 £1.7 27.3+1.8 27 £1.8
CDR 0.5 0.5 0.5
FAQ 5.7 £ 5.1 25+ 34 4+45
ADAS-Cogl3 21.1+6 17 £ 6.3 189 + 6.5
ApoE4 (+/-) 112/55 87/105 199/160



http://www.loni.ucla.edu/ADNI
http://www.loni.ucla.edu/ADNI
http://adni.loni.usc.edu
http://adni.loni.usc.edu
http://adni.loni.ucla.edu

M. Nguyen et al.

1. Pre-processing
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Fig. 1. A study framework for clustering and analyzing the heterogeneities in MCI patients. CIMLR = Cancer Integration via Multi-kernel Learning, MCI = Mild
cognitive impairment, MMSE = Mini-Mental State Examination, CDR = Clinical Dementia Rating, FAQ = Functional Activities Questionnaire, ADAS-Cog = Alz-

heimer’s Disease Assessment Scale-Cognitive Subscale test.

input data for the clustering step. These normalized features were
combined with MCI subjects to create a n x m matrix, where n represents
the MCI subjects, and m represents the brain features. The optimal
number of clusters is determined by a heuristic method based on gap
statistics, which is available in the CIMLR (Cancer Integration via Mul-
tikernel Learning) package in R [22]. Subsequently, the data matrix was
analyzed by the CIMLR algorithm and clustered into subgroups. The
algorithm also exported a list of structural features ranking based on
their contribution to the clustering analysis. Thirdly, comparisons
among clusters were done using the top 20 ranked brain features from
the clustering result, plasma biomarkers, and cognitive scores. The
correlation tests were conducted to investigate the relationship between
brain atrophy and plasma proteins. Finally, there was a longitudinal
analysis to track the changes in cognitive characteristics, brain atrophy
within 36 months and their linear relationships. Moreover, linear re-
lationships between cognitive trajectories and plasma biomarkers also
were analyzed.

2.2.1. Data pre-processing

All the MR images in this study were reconstructed and segmented by
Freesurfer version 5.3 (“recon-all”), which is documented at http
://surfer.nmr.mgh.harvard.edu. Freesurfer is an open-source software
that analyzes the functions, connectivity, and structures of the human
brain, allowing the extraction of brain imaging features. The processing
procedure of the software is described in detail in [23,24]. In this study,
after undergoing pre-processing, 358 brain structural features were
extracted using Freesurfer. To focus specifically on characterizing at-
rophy in individual brain regions, whole-brain and general features

were excluded. Therefore, the final selection comprised 310 structural
features, encompassing 106 vol, 68 area, 68 thickness, and 68 mean
curvature of brain regions based on Freesurfer’s default atlas. The
complete list of the selected brain features can be found in the Sup-
plementary File 1. Then, 310 features are normalized to make all data
have the same range from 0 to 1. These 310 normalized features were
used as input for the CIMLR model.

2.2.2. Clustering method

CIMLR is an extended clustering method of the SIMLR (Single-cell
Interpretation via Multi-kernel LeaRning) algorithm [25]. This algo-
rithm was chosen to be implemented due to its ability to handle large
amounts of data, good performance on a variety of datasets, especially
for highly heterogeneous data, and interpretable results [22]. The
detailed description of CIMLR is mentioned in [22].

In general, CIMLR is based on the multi-kernel learning method,
which combines kernels for each feature to determine how similar each
pair of patients is [22]. 310 normalized brain features extracted from
sMRI at baseline by Freesurfer were used for the CIMLR clustering step.
The input data, formated as a matrix of N subjects x M brain features,
was used to construct a series of Gaussian kernels, which are defined
below:

K(xl-,xj) =

1 exp =l
€;V2r 2¢

With x; and x; are respectively the ith and jth rows of the input data
and ¢ is the variance.
Similarly to [22], the optimization problem using Gaussian kernels


http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu

M. Nguyen et al.

to build one subject x subject similarity matrix:

ming ., — ZW,K, (x[,xj)S[,- + IS Hi + ytr(LT (Iy — S)L) + /)Zw,logw,
7

ijl
subject to L'L =1, » wi=1,w, >0, S; =1, and S; > 0.
! j

Here, N is the number of subjects, and C is the number of clusters. i, j,
and [ denote the row (subject), the column (brain feature), and the
kernel index. S represents the similarity matrix, w; is the weight of each
Gaussian kernel, Iy and I; denote the NxN and CxC identity matrices,
and y are tuning parameters, tr denotes the trace of the matrix, ||S||r
stands for the Frobenius norm of S, and L is a matrix enforcing C clusters
on S.

Each kernel is a measure of patient-to-patient distance, and CIMLR
learns weights for multiple kernels. Consequently, it combines the
multiple kernels into a symmetric similarity matrix with C blocks, with
each block being a set of MCI patients who are highly similar to each
other. In other words, each block is a cluster and C is the number of
determined clusters. The number of clusters C has to be determined
beforehand by a heuristic method [22,25,26]. This method was based on
the eigenvalues of the Laplacian matrix and the gap statistics approach
[22,25,26].

Finding an indicator matrix Z(R) = XR for a given value of C is the
goal. X is the matrix of the top eigenvectors of the similarity Laplacian,
and R is a rotation matrix.

M[(R)]; = max;[Z(R)];

L

The cost function to be minimized:

 ZRE,
T =2 iwr

i

The most optimal number of clusters in CIMLR shows the most sig-
nificant drop over the set values of C [22,25,26]. In this study, the range
value of C is 2 - 10 clusters. Subsequently, the similarity matrix is used
for dimension reduction by applying t-distributed stochastic neighbor
embedding (t-SNE) and then clustering into subgroups by K-means [27].

Features were ranked based on their importance for clustering by the
Laplacian Score method to measure the contribution of each feature to
the above similarity matrix. The feature scores were then aggregated by
the Robust Rank Aggregate method and the final features ranking list
was exported based on p-values for the features ordered by significance.
The clustering analysis was performed with R version 4.1.1 using the
CIMLR package (installing and codebase information, including esti-
mating the number of clusters, CIMLR clustering, and feature ranking
can be found at https://github.com/danro9685/CIMLR).

2.2.3. Cluster validation

This study used four validation methods to assess the clustering re-
sults: Davies-Bouldin, Silhouette, Pakhira-Bandyopadhyay-Maulik
(PBM), and Ray-Turi indices [28-31]. These methods serve as internal
validation by comparing the stability of the clustering results across
different C values of clusters and with other clustering algorithms. The
four most common clustering algorithms: K-Means, Hierarchical clus-
tering, Partition Around Medoids (PAM), and Clustering Large Appli-
cations (CLARA), were chosen to compare.

The Silhouette Index determines the separation distance between
clusters using the mean intra-cluster distance and the mean nearest-
cluster distance [29]. The PBM index is calculated using the distances
between the data points and their barycenters and the distances between
the barycenters themselves [30]. Thus, higher values for the Silhouette
and PBM indices suggest more stable clustering results [29,30].

The Davies-Bouldin index represents the average similarity measure
between each cluster and its most similar cluster, where the ratio of
within-cluster distances to between-cluster distances determines

Brain Multiphysics 6 (2024) 100093

similarity [28]. Lower scores reflect clusters that are more distant and
less dispersed. The Ray-Turi index calculates the mean squared distances
of all data points relative to the cluster’s barycenter, considering the
minimum squared distances between all cluster barycenters [31].
Therefore, lower values of the Davies-Bouldin and Ray-Turi indices
indicate more stable clustering results [28,31].

2.3. Cluster comparison

The main goal of this analysis is to identify the unique characteristics
of each cluster. To be more specific, the following characteristics were
compared between each cluster and the rest of the population: (1)
Demography: Number of subjects (including the number of ¢cMCI and
sMCI patients), gender ratios, age, years of education, and percentage of
people carrying APOE4 alleles; (2) Cognitive measurements: Baseline
values of MMSE, CDR, FAQ, and ADAS-Cog13; (3) Brain atrophy: From
a list of 310 brain structural features, the top 20 ranked features as
suggested by CIMLR were analyzed. This selection was based on the
rationale that a comprehensive analysis of all 310 features would be
time-intensive and beyond the scope of this study; and (4) Plasma
biomarkers: 191 plasma proteins and amino acids. The reason that only
focus on the top 20 is because it would take considerable time and effort
required to analyze all 310 features comprehensively. Next, the corre-
lation between the top 20 ranked brain regions and plasma biomarkers
was then performed by Spearman correlation function from SciPy Li-
brary (the p-values of the correlation tests were corrected by the Holm-
Bonferroni method).

2.4. Longitudinal analysis

The longitudinal analysis was performed in order to track changes
and trends in the progression of MCI in each cluster from baseline to the
follow-up 36 months. There are two main types of input data in the
longitudinal analysis. Firstly, four cognitive tests (MMSE, CDR, FAQ,
and ADAS-Cog13) of 359 subjects at five different time points: baseline,
month 6, month 12, month 24, and month 36 were obtained. Secondly,
MRI data of the same 359 subjects were collected at baseline, month 6,
month 12, month 24, and month 36. These MR scans were pre-processed
to obtain the top 20 ranked brain features for longitudinal analysis.
These two types of data were input to the Simple linear regression at five
time points (baseline, month 6, month 12, month 24, and month 36).
From here, the best-fit slope values were extracted to evaluate the pro-
gression of MCI in each cluster over the 36 months in terms of cognitive
performance and brain atrophy.

Additionally, linear regression was also applied to investigate
whether baseline values of plasma proteins and brain features at base-
line could be indicative of cognitive trajectories over 36 months. This
linear regression involved correlating the delta (change) in cognitive test
scores (MMSE, CDR, FAQ, and ADAS-Cog13) from baseline to 36 months
with the baseline plasma protein levels and brain features.

The longitudinal analysis was conducted by the Simple linear
regression tool in GraphPad Prism Software version 8.3.1. Only linear
relationships having p-value < 0.05 were chosen to be represented by
GraphPad Prism. Missing values of each feature were handled by the
pairwise deletion method in the longitudinal analysis.

2.5. Statistical comparison

All statistical comparisons in this study, including the demographic,
cognitive measurements, brain atrophy, and plasma biomarkers com-
parisons were performed in R version 4.1.1. For the clinical and cogni-
tive characteristics comparisons, Chi-squared test and Kruskal-Wallis
test were used to analyze differences among means of clusters. More-
over, the non-parametric Mann-Whitney-Wilcoxon tests were performed
to compare the brain atrophy and plasma protein characteristics be-
tween each cluster and the rest of the population. The comparisons


https://github.com/danro9685/CIMLR

M. Nguyen et al.

between each cluster were performed by Kruskal-Wallis test followed by
Dunn’s post-hoc analysis. All the p-values for multiple testing in this
study were corrected by the Holm-Bonferroni method to avoid type I
error.

3. Results
3.1. Internal validation of clustering results

In this study, we applied CIMLR to investigate the heterogeneities
within the MCI population. Results of the heuristic technique from
CIMLR proposed in the Methods section to identify the optimal number
of clusters show a dropping peak at 4 (Fig. 2.A). Therefore, four was the
most optimal number of clusters for the CIMLR clustering. Table 2 shows
the internal validation tests for the clustering results with the number of
clusters ranging from three to ten and with the four most common
clustering algorithms. Regarding the number of clusters, C = 4 got the
lowest Davies-Bouldin and Ray-Turi indices and the highest Silhouette
and PBM indices (Table 2). In terms of the clustering results of other
algorithms (K-Means, Hierarchical, PAM, CLARA), CIMLR also showed
more stable results with the lowest of Davies-Bouldin and Ray-Turi and
the highest Silhouette and PBM indices (Table 3). This result shows that
the four clusters identified by CIMLR were the most stable result.

3.2. MCI subtypes and important features identified by cimlr

The CIMLR algorithm was applied to cluster 310 brain features
extracted from sMRI of MCI patients at baseline. This analysis resulted in
the identification of four distinct clusters. These clusters were visualized
in a two-dimensional space, where each dimension represents a
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Table 2

Clustering internal validation results using CIMLR from 03 to 10 clusters.
Number of cluster (C) Davies-Bouldin Silhouette PBM Ray-Turi
3 2.724 0.070 0.838 2.119
4 2.611 0.071 1.048 2.001
5 3.055 0.050 0.718 2.767
6 3.363 0.038 0.444 3.438
7 3.418 0.033 0.432 3.530
8 3.595 0.024 0.325 4.682
9 3.534 0.023 0.323 5.078
10 3.333 0.019 0.274 3.945

Table 3

Clustering internal validation results using CIMLR and four common clustering
algorithms with the number of clusters is 4.

Clustering algorithm Davies-Bouldin Silhouette PBM Ray-Turi
CIMLR 2.611 0.071 1.048 2.001
K-Means 2.848 0.066 0.865 2.195
Hierarchical 2.712 0.067 1.144 2.135
PAM 3.937 0.037 0.827 6.802
CLARA 3.026 0.050 0.690 2.355

component derived through the application of t-SNE in the CIMLR al-
gorithm (Fig. 2.B). In this visualization, each data point in each cluster is
shown in the same color (Fig. 2.B). Cluster 1 contained the largest
number of subjects (n = 133), while cluster 3 had the smallest number of
MCI patients (n = 67). Cluster 2 and cluster 4 consisted of 77 and 82
subjects, respectively.

CIMLR, through learning weights for multiple kernels, enables the
determination of feature ranks based on their respective kernel weights.

B CIMILR 2D visualization
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Fig. 2. Clustering results of CIMLR visualization. (A) Plot of separation cost (y-axis) suggesting 4 as the most optimal number of clusters. (B) The t-SNE 2D visu-
alization of the 4 clusters was retrieved by CIMLR. Each cluster is identified by a color: red - cluster 1, green - cluster 2, blue - cluster 3, purple - cluster 4. (C) Labels of top
20 brain structural features. Each color in the annotation represents a distinct brain region.
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In Table 4, the top 20 brain features contributing to the clustering result
are presented, comprising four volume, two thickness, eight mean cur-
vature, and six area features. The complete list of ranked features can be
found in Supplement File 1. Among the top 20 features, the two most
crucial ones are located in the Superior Frontal area. Other top features
are located in Frontal (Right Lateral Orbitofrontal, Right Precentral),
Temporal (Left Entorhinal, Right Transverse Temporal, Right Middle
Temporal, Left Superior Temporal), Occipital (Left Lateral Occipital,
Left Lingual), Cingulate (Right Isthmus Cingulate, Right Rostral Anterior
Cingulate), and Parietal (Right Inferior Parietal) lobes, Right Para-
hippocampus and Right Insula Cortex. In addition, the LH Superior
Frontal region ranked in the top 20 for volume and thickness, and the LH
Entorhinal region appeared twice in the top 20 for volume and area.
Therefore, there are only 18 regions of interest in the most important
brain features ranked by CIMLR. The labels of these features are shown
in Fig. 2.C.

3.3. Demographic and cognitive characteristics

We next examined the heterogeneities in the demographics and
cognitive functions within the four identified MCI clusters at the base-
line (Table 5). Regarding the demographic data, Cluster 2 has the
highest percentage of cMCI subjects (n = 44), about 57.14%, followed by
Cluster 1 (n = 65 cMCI subjects, accounting for 48.88%). The number of
cMCI patients in Cluster 4 is lowest compared to the other clusters (n =
31 cMCI subjects, accounting for 37.80%). Subjects in cluster 2 have the
highest average age (mean age: 77.23 + 6.95 years old), which is about
five years older than participants in Cluster 4 - the youngest group (p-
value < 0.0001). For the gender distributions, the number of male
subjects is more dominant in Cluster 1 and 3. There was no significant
difference in years of education or distribution of APOE genotype among
the four clusters. No differences were found when comparing MMSE,
CDR, and FAQ scores among the four clusters. However, subjects in
Cluster 2 had higher ADAS - Cog13 scores than those in Cluster 4 did (p-
value = 0.0013). In conclusion, there are significant differences in the
age and gender distribution among the four clusters, but they have
similar patterns in APOE4 genotype prevalence, education, and cogni-
tive performance.

3.4. Atrophy characteristics

Fig. 3.A showed the comparison of the most important 20 features
from CIMLR between each cluster and the rest of the population.
Notably, five features exhibited significant differences across all

Table 4
Top 20 structural brain features were retrieved by CIMLR.
Rank Feature Names
1 Left Hemisphere Superior Frontal Volume
2 Left Hemisphere Superior Frontal Thickness
3 Right Hemisphere Isthmus Cingulate Mean Curvature
4 Right Hemisphere Lateral Orbitofrontal Mean Curvature
5 Left Hemisphere Lateral Occipital Volume
6 Left Hemisphere Entorhinal Volume
7 Right Hemisphere Transverse Temporal Area
8 Right Hemisphere Precentral Mean Curvature
9 Right Hemisphere Rostral Anterior Cingulate Area
10 Left Hemisphere Superior Temporal Area
11 Left Hemisphere Precuneus Mean Curvature
12 Left Hemisphere Frontal Pole Mean Curvature
13 Left Hemisphere Entorhinal Area
14 Left Hemisphere Rostral Middle Frontal Mean Curvature
15 Right Hemisphere Inferior Parietal Area
16 Right Hemisphere Middle Temporal Area
17 Right Hemisphere Cuneus Mean Curvature
18 Right Hemisphere Parahippocampal Thickness
19 Left Hemisphere Lingual Volume
20 Right Hemisphere Insula Mean Curvature
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Table 5
Comparison of demographic and cognitive characteristics among clusters.
Cluster 1 Cluster 2 Cluster 3 Cluster 4 p-value
(n=133) n=77) (n=67) (n=82)
Demographic
sMCL n 68 33 40 51 NS*
cMCL n 65 44 27 31
Age 76.43 £ 77.23 £ 72.06 £ 72+7.11 <
6.65 6.95 7.2 0.0001°
Sex (M/F) 116/17 24/53 56/8 30/52 <
0.0001"
Education, 16.09 + 151 + 15.62 + 15.32 + NS
years 2.54 3.33 3.22 3.33
APOE4+ (%) 54.89 57.14 53.73 56.09 NS*?
Cognitive and memory
MMSE 26.98 + 26.58 + 26.92 + 27.32 + NS ®
1.75 1.59 1.84 1.83
CDR 0.5 0.5 0.5 0.5 NS
FAQ 4.25 + 4.75 £ 3.49 + 3.07 £ NS
4.84 5.09 3.95 3.8
ADAS - Cog 19.11 + 20.64+7 19 + 6.62 16.86 + 0.003 "
6.07 6.21

Abbreviations: ¢cMCI = converted Mild cognitive impairment, SMCI = stable
Mild cognitive impairment, M = Male, F = Female, APOE4+ = Apolipoprotein
E4 positive, MMSE = Mini-Mental State Examination, CDR = Clinical Dementia
Rating, FAQ = Functional Activities Questionnaire, ADAS-Cog = Alzheimer’s
Disease Assessment Scale-Cognitive Subscale test, NS = Not significant. Data is
illustrated as mean + standard deviation or number/number.

# Chi-square test.

b Kruskal-Wallis test.

clusters, including the left Superior Frontal Thickness, left Lateral Oc-
cipital Volume, right Transverse Temporal Area, right Inferior Parietal
Area, and right Middle Temporal Area (p-value < 0.05) (Fig. 3.A).
However, the right Isthmus Cingulate and Insula Mean Curvatures did
not show significant differences in all clusters (Fig. 3.A). The brain at-
rophy comparison for each cluster is depicted in Fig. 3.B, while Fig. 3.C
visually represents the distinctive atrophy patterns of the four clusters,
indicated by p-values obtained from the comparison between each
cluster and the rest of the population.

Specifically, Cluster 3 exhibited the mildest atrophy pattern in the
top 20 brain features (Fig. 3.A, Fig. 3.B). In contrast, Cluster 2 displayed
the most severe atrophy compared to other cluster in nine features
related to the left Superior Frontal, Temporal, left Entorhinal, right
Rostral Anterior Cingulate, and left Lingual regions (Fig. 3.A, Fig. 3.B).
Cluster 4 was notable for the most pronounced atrophy in the left Lateral
Occipital region and decreased value of the left Precuneus, right Cuneus,
right Precentral Mean Curvatures (p-value< 0.05) but mildest atrophy in
the parahippocampal region (Fig. 3.A, Fig. 3.B). Cluster 1 generally had
mild atrophy patterns similar to Cluster 3 but differed by showing sig-
nificant atrophy in the right Parahippocampal region (Fig. 3.A, Fig. 3.B).
The complete list of p-values resulting from the comparison of the top 20
brain features between each cluster and the rest of the population, and p-
values from the Dunn’s comparisons, are available in Supplementary
File 2.

3.5. Plasma biomarker characteristics

At baseline, 51 biomarkers out of 191 proteins in the input data were
found to be differentially expressed among the four clusters. Fig. 4
showed the comparisons of the plasma biomarker profiles of each cluster
to the rest of the population and presented the results of Dunn’s multiple
comparisons. Cluster 1 had the greatest number of plasma markers with
distinctive expression patterns (26 proteins) when compared with the
rest of the population, while Cluster 3 had the lowest number of unique
plasma markers (13 proteins) (Fig. 4.A). Among the markers, only
Ferritin and Leptin showed significant differences in all four clusters (p-
value < 0.01) (FSH, LH, and Testosterone were excluded due to the
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difference in gender distributions).

Cluster 1 is characterized by a significantly lower concentration of
BDNF, CD40-L, GRO-a, and ENA; and a higher concentration in CgA, CK-
MB, FABP, Ferritin, Creatinine, TNFR2 and Sarcosine (Fig. 4.A). Among
four clusters, Cluster 2 had the highest number of statistically significant
markers, with the highest values of Haptoglobin, Leptin, Adiponectin,
Sortilin, and Thrombopoietin; and the lowest values of CK-MB, Calci-
tonin, and IL-18. More interestingly, the levels of six out of seven amino
acids (His, Ile, Lys, Trp, Met, Val) in Cluster 2 were the lowest among the
three. Cluster 3 and 4 shared a similar marker profile and involved the
least number of AD plasma biomarkers. Nevertheless, while Cluster 3
has higher value of Calcitonin and the lowest concentration of A2Macro,
BNP, MIG and TFF3; Cluster 4 presented high concentrations of Factor
VII, Creatinine, and low value of TM and BLC.

In the multiple comparisons between subgroups, the total number of
significantly different markers was 48 (Fig. 4.B). NFL concentration in
Cluster 2 is higher than that of Cluster 3 (p-value < 0.05). Cluster 1 had a
higher Cortisol concentration than Cluster 4 (p-value < 0.05) and a lower
value of Leptin compared to Cluster 2 and Cluster 4 (p-value < 0.001).
However, no plasma markers had significant differences in all compar-
isons. The complete list of p-values resulting from the comparison of

plasma biomarkers between each cluster and the rest of the population,
and p-values from the Dunn’s comparisons, are available in Supple-
mentary File 3.

3.6. Interactions between plasma biomarkers and brain regions

Our next objective was to study the relationships between signature
plasma biomarker patterns and the differences in brain atrophies of each
cluster at baseline. All plasma markers having significant differences
compared with the population (Fig. 4.A) were analysed for the corre-
lation with the top 20 brain features to study the relationships between
signature plasma biomarker patterns and the distinct brain atrophy
characteristics of each cluster. Fig. 5 displays the significant and
moderately strong correlations (p-value < 0.05, Rho > 0.3 or < —0.3)
between plasma proteins and specific structural brain features. The
complete list of the correlations, including p-value and rho value, is
available in Supplementary File 4. Cluster 1 exhibited significant
correlations between nine protein markers and seven cortical features.
There were strong negative associations (p-value < 0.001) between
FABP, SDMA, and NFL with RH Parahippocampal Thickness; and strong
positive correlations (p-value < 0.001) between NGAL with LH
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Fig. 4. Heatmap of the comparisons of plasma protein characteristics among clusters. (A) The comparison between each cluster and the rest of the population. (B)
Dunn’s multiple comparisons. The heatmap colours indicate the p-values of the comparisons, and the annotation numbers in Figure A indicate the mean concen-
trations of each protein (pre-processed by ADNI). Abbreviations: Alpha-2-Macroglobulin = A2Macro, Apolipoprotein C-I = Apo C-I Brain-Derived Neurotrophic
Factor = BDNF, B Lymphocyte Chemoattractant = BLC, Brain Natriuretic Peptide = BNP, CD40 Ligand = CD40-L, Chromogranin-A = CgA, Creatine Kinase-MB = CK-
MB, Epithelial-Derived Neutrophil-Activating = ENA, Fatty Acid-Binding Protein-heart = FABP, FASLG Receptor = FAS, Ferritin = FRTN, Follicle-Stimulating
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crosis Factor Receptor-Like 2 = TNFR2, Transthyretin = TTR, Vascular Endothelial Growth Factor = VEGF, Symmetric dimethylarginine = SDMA.

Precuneus Meancurv and Apo-Cl with LH Rostral Middle Frontal
Meancurv. On the other hand, in Cluster 2, Apo-C1 showed a negative
correlation with LH Rostral Middle Frontal Meancurv. Moreover, the RH
Parahippocampal Thickness in Cluster 2 showed positive correlations
with six amino acid markers (Trp, Ile, Val, Glu, His, Met). Cluster 3 had
seven proteins significantly correlated (p-value < 0.001) with the brain
features, four of which displayed a positive correlation, while the others
showed an inverse relationship with the markers. In Cluster 4, seven out
of eight protein markers presented negative correlations with RH Pre-
central Meancurv (p-value < 0.05), with the most significant proteins
being FABP and NGAL (p-value < 0.001) (Fig. 5).

3.7. Longitudinal analyses of cognitive characteristics

To assess the rate of disease progression, a longitudinal evaluation

from baseline to 36-month follow-up was conducted based on cognitive
and neuropsychological performance, by using four tests: MMSE, CDR,
FAQ, and ADAS- Cog-13 (Fig. 6.A).Table 6 displays the Slope values of
the linear regressions from Fig. 6.A. Cluster 2 showed the highest rate of
cognitive decline, shown by the peak slope values in all tests, followed
by Cluster 1, with the second highest values in the MMSE, CDR, and FAQ
scores. Clusters 3 and 4 both showed a mild cognitive decline with
similar slopes across four tests, but cluster 4 displayed a slightly milder
decline.

Longitudinal correlations between the four cognitive test results and
the plasma proteins were analyzed over 36 months and shown in Fig. 6.
B. Only significant correlations were reported. There were five protein
markers that could possibly be indicative of the cognitive decline rate in
MCI patients. Specifically, higher concentrations of plasma NFL and
Cortisol, in particular, may be linked with a faster cognitive decline rate.
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In contrast, patients with higher Hepatocyte Growth Factor (HGF), B
Lymphocyte Chemoattractant (BLC), and Interleukin-18 (IL-18) were
likely to have slower decreases in cognitive functions (Fig. 6.B).

3.8. Longitudinal analyses of brain atrophy characteristics

Longitudinal changes in brain atrophy were investigated by tracking
the top 20 brain features in three years, and only statistically significant
results (p-value < 0.05) were chosen to be represented in Fig. 7.A. Then,
features with significant changes were further examined for correlations
with cognitive test result changes (Fig. 7.B). Table 7 shows the Slopes of
the linear regression analyses in four clusters in three-year-time. There
were six features showing consistent decreasing trends in all four clus-
ters (Fig. 7.A and Table 6). Amongst the other features, LH Lateral Oc-
cipital and Superior Frontal volumes showed the steepest degeneration
in Cluster 3 (Lateral Occipital - slope = —18.5 and Superior Frontal -
slope = - 35.5).

Cluster 3 had the most rapid atrophy pattern, with significantly
decreasing trends in five out of seven cortical features and the highest
negative slope in the LH Superior Frontal, LH Lateral Occipital area, and
LH Entorhinal Volume. Cluster 2 decreasing trends were only significant
in the LH Entorhinal Volume, however, the LH Superior Frontal Thick-
ness showed the second highest negative slope compared to the other
clusters. On the other hand, the cognitive trajectory in the MCI popu-
lation is mostly inversely correlated with nine brain features (Fig. 7.B).
Amongst them, LH Lateral Occipital Volume, LH Entorhinal Volume, RH
Parahippocampal Thickness, and RH Inferior Parietal Area showed the
most significant correlation with cognitive function test scores and
hence could be indicative of cognitive decline.

4. Discussion

In this study, we employed the CIMLR clustering algorithm to
investigate the heterogeneity of the MCI population using structural MRI
from the ADNI database. We used FreeSurfer to extract a total of 310
morphometric features from T1-weighted MRI (including 106 vol, 68
area, 68 thickness, and 68 mean curvature features) of 359 MCI subjects.
Then, the CIMLR clustered patients into four subgroups and also ranked
these 310 features based on their contribution to the clustering process.
Four clusters were then examined for their differences in cognitive
scores, top 20 important brain features, proteomic profiles, and their
corresponding longitudinal correlations at baseline and 36 months
follow-up. The heterogeneities in atrophy patterns and biological pro-
cesses of these four clusters were examined through the differences in
morphometric SMRI features and plasma proteins. At the baseline, all
subgroups presented non-significant differences in education levels,
APOE4 prevalence, and cognitive scores, including MMSE, CDR, FAQ,
and ADAS-CoG (Table 5). Despite this initial similarity, we identified
four distinct brain atrophy patterns based on the MRI features, which
correspond to different plasma biomarkers and cognitive degeneration
rates for both cross-sectional and longitudinal data (Table 8).

In general, Clusters 1 and 2 displayed the highest number of con-
verter MCI with an older average age above 76 compared to Cluster 3
and 4. More specifically, Cluster 2 stood out with the highest AD risk due
to the most severity of brain atrophy at baseline, as evidenced by severe
cortical shrinkages in the AD-related regions, including the temporal,
entorhinal, rostral anterior cingulate, and lingual regions (Fig. 3) [32,
33], and the fastest cognitive decline (Fig. 6.A). Cluster 1, despite having
the second to highest average age, had moderate brain shrinkage and a
similar atrophy pattern to Cluster 3 (Fig. 3). To delineate the
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Fig. 6. The longitudinal analyses over 36 months of cognitive performance among four clusters. (A) Linear regression graphs indicated the longitudinal analysis of
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plasma proteins.

indicate white matter atrophy, with higher mean curvature values in a
brain region corresponding to greater severity of white matter damage
[37,38]. By incorporating these diverse features, we can gain a more
nuanced understanding of the atrophy patterns within the MCI
population.

Table 6

Linear regression slopes of four cognitive tests from baseline to 36 months.
Cognitive test Cluster 1 Cluster 2 Cluster 3 Cluster 4
MMSE -0.08876%** -0.06812%* - 0.06362**
CDR 0.007413*** o g
FAQ 0.179
ADAS-Cog13 0.1622

4.2. Brain atrophy patterns of high-risk clusters

Abbreviations: MMSE = Mini-Mental State Examination, CDR = Clinical De-
mentia Rating, FAQ = Functional Activities Questionnaire, ADAS-Cog = Alz-
heimer’s Disease Assessment Scale-Cognitive Subscale test.

" p-value <0.05.

** p-value <0.01.

" p-value <0.001.

heterogeneous properties between the clusters, we then analyzed the
atrophy pattern and plasma protein expression within each group.

4.1. Exploring heterogeneity by multi-faceted analysis of brain features

Although numerous studies on MCI heterogeneity have focused on
analyzing volume-based or gray matter features from neuroimaging
data, emerging evidence has suggested that other morphometrics such
as curvature, area, or thickness of the cortical regions and subregions
could provide benefits over measuring volumes [34-36]. In this study,
we combined multiple types of structural MRI features extracted from
FreeSurfer, including volume, thickness, area, and curvature of different
brain regions to cluster the MCI population. This strategy allows us to
employ a multi-faceted analysis of atrophy, as each type of feature
provides a distinct perspective on assessing the extent of atrophy. For
instance, previous research suggests that mean curvature features can

10

Using the features from FreeSurfer, our analysis revealed four
distinct MRI-based regional atrophy patterns (Fig. 3). The top 20 MRI-
derived features identified by CIMLR in our study reflected the brain
regions that were previously reported to correlate with AD progression
[39-42]. Moreover, the heterogeneities in these top 20 features
(Table 4) were also documented in precedent research [15,17,43,44].

In more detail, Cluster 2 showed the most severe atrophy with a
diffuse pattern and severe brain atrophy in the temporal, frontal lobes,
and the entorhinal cortex. This pattern closely mirrors the progression of
tau pathology as described in the Braak staging system. According to this
system, the initial stages of atrophy are observed in the entorhinal re-
gion and midbrain areas, from where it progressively extends to the
frontal and temporal lobes, impacting the parietal and occipital lobes
[45,46]. These atrophy were the most severe in four cortical areas that
overlap with typical AD cluster in other heterogeneity research [47-49],
including Frontal, Precuneus, Temporal, Lateral Occipital regions, and
Entorhinal cortex. For instance, the Li study’s atrophy map of AD pa-
tients identified major brain atrophy in the temporoparietal, cingulate
gyrus, precuneus, and occipital regions, while its frontal variant
involved cortical shrinkage in the frontal cortical areas.

On the other hand, compared to the Whitwell study, the atrophy
pattern of Cluster 2 was a mix between the typical AD group and the
limbic-predominant group, where affected areas included the temporal,
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Fig. 7. The longitudinal analyses over 36 months of the statistically significant brain features selected from the top 20 among four clusters. (A) Linear regression
graphs indicated the longitudinal analysis of brain feature changes from baseline to month 36th. (B) The linear relationships between the changes of cognitive tests
and brain atrophy.

Table 7
Linear regression slopes of brain atrophy with significant change in 3-year-time.
Features Cluster 1 Cluster 2 Cluster 3 Cluster 4
RH Middle Temporal Area —2.377 —2.44 —5.469* —3.457%*
RH Isthmus Cingulate Meancurv 3.083 x 1075 1.344 x 107° —-4.189 x 107° —9.425 x 10~%"
LH Superior Frontal Thickness —0.00184** —0.00167 —0.001784 —0.002328**
RH Parahippocampal Thickness —0.002861* —0.003112 —0.004851"* —0.003785*
LH Entorhinal Volume —5.096" —5.698* —6.097* —3.466
LH Lateral Occipital Volume —5.685 -6.39 —18.5% -13.73*
LH Superior Frontal Volume —19.07* —14.53 —35.55%* —21.64%*

Abbreviations: LH: Left hemisphere, RH: Right hemisphere.
" p-value <0.05.
" p-value <0.01
*** p-value <0.001.

frontal lobes, and the entorhinal cortex [46]. From the discussed ex- Cluster 4 presented an anatomical atrophy similar to Cluster 2 but
amples, our results suggested the pattern of atrophy in Cluster 2 could be with lesser degeneration, but this cluster has the best thickness of the
indicative of typical AD progression, which is strengthened by its worst right Parahippocampus. During AD development and progression, the
cognitive decline after 36 months and well-aligned with previous Hippocampal and its related structures such as the Parahippocampal
studies. regions are the earliest and most severely affected brain regions. In
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Table 8
Summary of the heterogeneity of four proposed MCI clusters.
Cluster 1 Cluster 2 Cluster 3 Cluster 4
Demographics Old age group 0Old age group Young age Young age group
group
Cognitive Slow Fastest Slow Slowest
decline
Brain atrophy Mild atrophy Most severe atrophy in AD-related regions, including the temporal, Mildest Quite severe atrophy
More temporal and entorhinal, rostral anterior cingulate, and lingual regions atrophy Similar pattern to C2
occipital dominant atrophy Parahippocampus: thickest
Plasma - High TNFR2 - High Leptin, Adiponectin, and CKMB Low MIG Low Thrombomodulin and B
biomarkers - - Low BDNF and CD40L - Positive correlation: amino acids and Parahippocampal atrophy Lymphocyte Chemoattractant

- Low tryptophan

contrast, most cortical shrinkages in Cluster 4 were in the Occipital and
the Precuneus regions, which are not normally observed in AD atrophy
patterns but in Posterior Cortical Atrophy, a less common form of de-
mentia. Therefore, these results implied a lower incident risk for AD in
Cluster 4 as this cluster did not exhibit atrophy in AD-related brain re-
gions, and suggested mixed dementia, where cognitive decline is
concurrently caused by other types of dementia, such as Posterior
Cortical Atrophy.

Compared to them, Cluster 1 and 3 had the mildest brain atrophy
with similar morphometric values in 10 out of the top 20 brain features,
specifically the superior frontal, superior temporal, lingual, and occipi-
tal regions. Despite sharing great atrophy similarity, the cortical damage
in the Lingual and Temporal areas of Cluster 3 was significantly less
severe than in Cluster 1, suggesting a more temporal and occipital-
dominant atrophy in Cluster 1 compared to Cluster 3. On the other
hand, compared to the Ten Kate study, Cluster 3 and 1 displayed a
different class exhibiting predominant medial-temporal and parieto-
occipital atrophy [4]. On the other hand, longitudinal analysis showed
a negative correlation between the Left Lateral volume, Entorhinal
volume, RH Parahippocampal thickness, Inferior Parietal area, and the
cognitive decline trajectory of all four MCI subtypes, reflecting on the
worsening cognitive scores. These findings align with a previous study,
which found that the decrease in volume of the temporal and parietal
lobes correlated with the severity of cognitive impairment and the
development of neurodegeneration [41,50,51].

In brief, our study identified four different atrophy patterns based on
SMRI morphometric features obtained from FreeSurfer with Cluster 4
resembling typical AD atrophy, Cluster 2 as non-AD mix atrophy, and
Cluster 1 and 3 as the mildest MCI subgroups. Based on these results, we
further addressed the anatomical variation of cortical degeneration in
MCI patients, particularly for subgroups with equivalent levels of brain
atrophy and similar demographic profiles at baseline.

4.3. Cardiovascular and metabolic mechanisms contributing to AD
progression

After clustering the MCI populations into four groups with hetero-
geneous atrophy profiles, we examined the variation in plasma marker
expression. Among the four subgroups, Cluster 2 has the most significant
number of AD-related indicators, which were inversely correlated with
cognitive outcomes. These biomarkers are involved in various degen-
eration pathways, including cardiovascular diseases (CVDs), amino
acids deficit, and lipid metabolisms. Abnormally elevated levels of
Leptin, Adiponectin, and CKMB indicate the presence of CVDs and car-
diac diseases that can traverse to the nervous system damaging the
neuronal networks and synapses [52-54]. Moreover, we observed a
positive relationship between the amino acids level and the Para-
hippocampal atrophy in Cluster 2, consistent with previous studies
linking amino acid metabolism to AD and cognitive trajectory [55,56].
Notably, tryptophan and its intermediate metabolites can modulate AD
development by regulating neuro-inflammation, amyloid-beta synthe-
sis, as well as causing sleep disorders that affect amyloid-beta clearance
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[57,58]. Abnormal levels of these markers suggested a multi-factor
mechanism contributing to AD development in Cluster 2, explaining
the cluster’s poorest cognitive scores and severe atrophy.

4.4. Protective biological markers mitigate AD progression

Compared to Cluster 2, despite having a similar average age, Cluster
1 showed a lower incidence of ¢cMCI and less severe brain atrophy
compared to Cluster 2, indicating that age alone does not determine the
severity of disease progression. This variation may be attributed to the
presence of protective biological markers, such as TNFR2, which acts as
an immune modulator with strong anti-inflammatory effects, and
therefore causes protective effects on the oligodendrocytes and neurons,
promoting cell survival [59,60]. Cluster 1 also displayed low levels of
BDNF and CD40 Ligand, which are involved in inflammation pathways
as indicators and modulators [61,62]. These markers may protect
Cluster 1 from inflammatory damage, which is considered a major
mechanism leading to AD. Conversely, Cluster 1 showed high levels of
FABP and Ferritin. While Ferritin is known for the storage of iron ions,
FABP is a lipid-binding protein that facilitates the intracellular trans-
portation of fatty acids into the nerve cells, which might pose a risk for
AD development [63,64]. However, the negative impact of these factors
seems to be mitigated by the anti-inflammatory markers, resulting in a
slower progression of degeneration within Cluster 1 due to a balance
between harmful and protective mechanisms, particularly involving
iron deposition and lipid metabolism abnormalities in the central ner-
vous system (CNS).

Clusters 3 and 4 displayed a similar marker profile, particularly with
the lowest level of MIG (CXCL9). It’s important to note that Cluster 3
displayed the mildest atrophy at baseline and a mild cognitive decline
over time. This align with previous study, MIG, particularly circulating
MIG, level was high in AD patients and suggestively associated with a
higher risk of AD [65-67]. This may be related to MIG is present in the
Central Nervous System and is related to pro-inflammation and endo-
thelial dysfunction [68].

4.5. Potential plasma biomarkers for early diagnosis

Longitudinal analyses of cognitive performance revealed increased
levels of Cortisol and NFL may link with a faster cognitive decline; and
higher levels of Hepatocyte Growth Factor (HGF), B lymphocyte che-
moattractant (BLC), and interleukin-18 (IL-18) correlate with slower
decreases in cognitive functions. This is consistent with previous
research that a long-term increase of Cortisol and NFL was associated
with a faster progression of AD, and suggested the role of these two
proteins as potential preclinical markers for AD [69-72]. On the other
hand, higher levels of HGF in CSF at baseline can be indicative of a faster
cognitive decline in both MCI and AD patients and associated with Small
vessel disease dementia [73,74]. However, the HGF/c-Met-receptor
system activation is reported to be associated with various biological
processes including mitogenesis, motogenesis, morphogenesis, stem cell
differentiation, and neurogenesis. These processes have the potential to
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prevent neuroinflammation, oxidative stress-induced damage, neuro-
toxicity, which can halt the progression of AD [75,76]. Interestingly,
another study demonstrated that the expression of IL-18, which is
associated with neuroinflammatory processes, reaches its peak during
the MCI stage and decreases during the AD stage, aligning with the
findings of our study [77]. However, there is limited evidence sup-
porting the role of BLC in AD pathology. In conclusion, HGF was further
confirmed as a potential treatment strategy for AD and dementia, while
Cortisol and NFL were identified as potential prognostic biomarkers for
assessing the severity of cognitive decline. Further investigation is
needed to understand the patterns of IL-18 expression in MCI converted
to AD.

4.6. Limitations and future directions

Our study had several limitations owing to its limited sample size and
longitudinal data availability. Firstly, the sample size in the study was
limited as we aimed to characterize both MRI-based brain atrophy and
plasma protein profile, so only subjects with both information accessible
were included. Secondly, there were cases of missing data, particularly
follow-up sMRI after 36 months, because of the high drop-off and
mortality rate as the disease progressed in high-risk patients. Conse-
quently, those limitations may lead to large standard deviations and
insignificance in statistical analysis. Thirdly, because of the complexity
of the study design and the impracticality of thoroughly analyzing all
310 features, this study only focused on the top 20 brain features, which
did not include the medial temporal region - an important region for AD.
Therefore, the future analysis could expand our study scope and include
more brain regions in the CIMLR clustering step, and increase the sample
size both regionally and globally to study the MCI heterogeneity more
comprehensively. Although there had been numerous research devel-
oping blood tests and exploring potential markers for the diagnosis of
AD, yet, the efficacy of these blood markers varied across studies within
the same population and ethnic community [78-80]. One possible
confounding factor that causes these variations is the disease hetero-
geneity and even its precedent stage - MCI. The findings and pipeline we
proposed in this study can be employed for similar studies on other
datasets or larger populations to find the characteristic biomarker panels
that can be used for early AD screening and diagnosis. Therefore, taking
into account this heterogeneity of the MCI stage in biomarkers explo-
ration study could resolve the current limitation and inconsistency of
previous research, and further enhance AD early diagnosis and prog-
nosis accuracy.

5. Conclusion

This study identified four different clusters in the MCI population by
the data-driven clustering approach based on imaging data. Although
four clusters had the same cognitive performance with the traditional
diagnostic methods at the baseline, these clusters displayed distinct
brain atrophy, plasma biomarkers, and cognitive progression charac-
teristics. Parahippocampal atrophy was found to be positively correlated
with cognitive impairment and amino acid levels. The study also iden-
tified several factors that can alleviate or worsen the progression of the
MCI including lipid and amino acid metabolism, cardiovascular dis-
eases, inflammatory modulators, and glial activations. These findings
suggest that the current clinical practice is not sensitive to detect the
early changes of AD. The longitudinal analyses showed the potential of
HGF as a slow cognitive impairment marker; Cortisol and NFL as
prognosis markers for aggressive MCI progression. These findings pro-
vide valuable insights for future research, contributing to the accurate
diagnosis and precision medicine for MCI progression and AD.

Statement of significance

Current treatments fail to halt the progression of Alzheimer’s disease
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(AD) due to the clinical, pathological, and morphological heterogene-
ities of the AD spectrum. Emerging evidence has suggested that these
heterogeneous characteristics can be rooted back to the early stages of
AD - mild cognitive impairment (MCI). Addressing these heterogeneities
at the MCI stage when the disease has not reached an irreversible status
can allow the development of early and timely interventions to manage
AD more effectively. Therefore, in this study, we aim to investigate the
heterogeneity of the MCI population based on structural brain imaging
using clustering methods. This method will cluster the MCI population
into subgroups, which are called clusters. The heterogeneous charac-
teristics of each cluster were then analyzed in terms of cognitive tra-
jectories, brain atrophy, and plasma biomarkers at the baseline and after
longitudinal changes. We identified four clusters with distinct progres-
sion rates and proteomic profiles using the CIMLR algorithm, suggesting
potential markers and approaches for personalized AD diagnosis and
management.
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