
Brain Multiphysics 6 (2024) 100093

Available online 29 March 2024
2666-5220/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Full Length Article 

Revealing the heterogeneity of plasma protein and cognitive decline 
trajectory among Mild Cognitive Impairment patients by clustering of brain 
atrophy features 

My Nguyen a,b, Bao Pham b,c, Toi Vo b,c, Huong Ha b,c,* 

a Faculty of Biology – Biotechnology, University of Science, Ho Chi Minh City 70000, Vietnam 
b Vietnam National University – Ho Chi Minh City, Ho Chi Minh City 70000, Vietnam 
c School of Biomedical Engineering, International University, Ho Chi Minh City 70000, Vietnam   

A R T I C L E  I N F O   

Keywords: 
Alzheimer’s disease 
Mild cognitive impairment 
Clustering analysis 
Brain atrophy 
Plasma protein 
Cognitive decline 

A B S T R A C T   

Alzheimer’s disease (AD) is suggested to be a heterogeneous disorder, but limited studies explore the hetero
geneity of the Mild Cognitive Impairment (MCI) stage. This study aimed to tackle such problems using the CIMLR 
(Cancer Integration via Multikernel Learning) algorithm to cluster brain structural features extracted from T1- 
weighted Magnetic Resonance Images of MCI patients from Alzheimer’s Disease Neuroimaging Initiative. The 
demographic and cognitive results, characteristics of brain structural features, plasma biomarkers, and longi
tudinal cognitive trajectory were analyzed for each cluster. The CIMLR clustering analysis revealed four distinct 
clusters. Cluster 1 is the oldest group but has had mild atrophy and moderate progression with elevated Tumor 
Necrosis Factor Receptor 2 level; and low Brain-Derived Neurotrophic Factor and CD40 Ligand levels. Cluster 2 
showed the highest risk for aggressive MCI progression, with abnormal Leptin, Adiponectin, and Creatine kinase- 
MB values. Cluster 3 exhibited a low level of Monokine Induced by Gamma Interferon and mild atrophy that 
shared similar patterns with Cluster 1. Cluster 4 represented the healthiest group during longitudinal tracking, 
with the mildest Parahippocampal atrophy, which was found to be positively correlated with cognitive 
impairment and amino acid levels. The longitudinal analyses showed the potential of Hepatocyte Growth Factor 
as a marker for slow cognitive impairment; Cortisol and Neurofilament Light Polypeptide as prognosis markers 
for aggressive MCI progression. These findings may lay out new suggestions for further research contributing to 
the accurate diagnosis and precision medicine for dementia and AD.   

1. Introduction 

Alzheimer’s Disease (AD) is a heterogeneous disorder with high di
versity in demographics, progressive rate, brain atrophy phenotypes, 
and other characteristics [1–6]. It is crucial to acknowledge that current 
treatments are unable to reverse brain atrophy in the advanced stage of 
AD. Therefore, understanding the heterogeneity at the early stage of the 
disease, known as Mild Cognitive Impairment (MCI), can help to facil
itate the drug development process and establish improved disease 
management strategies for the patients. 

In studying heterogeneity using computational methods, cluster 
analysis is widely used; however, it has certain limitations when applied 
to investigating AD characteristics. Firstly, there is a scarcity of studies 

that have examined the heterogeneous characteristics of the MCI pop
ulation, with most research focusing on the AD stage [2,7-9]. Secondly, 
most clustering studies analyzed the heterogeneity in three types of 
patients simultaneously: the cognitively normal, MCI, and AD patients 
[10–13]. Consequently, the resulting clusters comprise individuals from 
all three groups, making it challenging to identify unique characteristics 
specific to the early stages of disease development and the potential 
development of diagnostic biomarkers. The third issue is that several 
studies investigating the heterogeneity of MCI encountered an excessive 
number of clusters, which hinders further characterization of each 
cluster [11]. Therefore, employing a new approach that can overcome 
mentioned limitations to study the MCI stage’s heterogeneity effectively 
is crucial. 
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Clustering studies for AD commonly employ Magnetic Resonance 
Imaging (MRI) due to its rich and extensive data information. Specif
ically, MRI allows for visualizing the brain’s structure at the voxel level, 
providing a clear representation of brain atrophy, indicative of a pro
gressive neuronal loss in AD. This information provides insights into the 
heterogeneous patterns of atrophy observed in AD patients. Besides the 
structural brain imaging markers, most current clustering research on 
AD patients concentrated on studying protein markers derived from 
cerebrospinal fluid (CSF), including tau, phosphorylated-tau, and Beta- 
Amyloid (Aβ) [4,13,14]. These studies confirmed the heterogeneity of 
the proteins within AD patients; however, CSF proteins have limited 
clinical utility due to their high costs, invasiveness, need for well-trained 
practitioners for sample collection, and poor accessibility in remote 
areas. In contrast, blood-based biomarkers are promising alternatives 
due to their convenience in sample collection with minimal invasion, 
low cost, and high time effectiveness. Notably, by utilizing the clustering 
method on the plasma protein data of CN, MCI, and AD patients, 
blood-based proteins were suggested to be heterogeneous [15]. How
ever, four clusters from the mentioned study still contain a mixture of 
three diagnostic groups of patients (CN, MCI, and AD), which is chal
lenging to identify specific biomarkers for prognostic and early diag
nosis. Therefore, it is crucial to explore the heterogeneity of plasma 
proteins, specifically among MCI patients, to gain a comprehensive 
understanding of this population. This knowledge will contribute to 
unraveling the underlying mechanisms related to heterogeneity and its 
relationship to brain atrophy patterns, proposing new insights and 
promising applicable biomarkers of high-risk populations. 

Studying the heterogeneity of the mild cognitive impairment (MCI) 
population only at a single time point, usually at baseline, provides a 
limited view of the complex and varied trajectories of disease progres
sion. Meanwhile, the longitudinal analysis enables capturing the long- 
term trends and progression of the disease and identifying the distinct 
characteristics of high-risk individuals with aggressive progression. 
Existing studies mostly categorized the MCI population into two sub
groups: cMCI (converted-MCI who converted to AD within 36 months) 
and sMCI (stable-MCI who did not convert to AD within 36 months) 
[16]. However, this classification does not capture the full spectrum of 
disease progression, as evidenced by studies demonstrating varied pat
terns in cognitive performance, brain regions, and CSF protein across 
different patient groups [11,17]. This indicates the limitation of solely 
relying on cMCI and sMCI to represent high-risk populations adequately. 
Therefore, it is crucial to study the heterogeneity of MCI longitudinally. 
Additionally, current longitudinal studies on the heterogeneity of MCI 
mainly focused on cognitive declines, common brain regions such as the 
hippocampus, and common CSF biomarkersrs [4,14,18-21]. This limi
tation leads to the need to expand the scope of longitudinal analysis to 
changes in additional brain regions beyond the hippocampus and 
explore new biomarker variations such as plasma protein. This new way 
of research allows diving deeper into the relationship among those 
characteristics is essential for identifying new prognostic markers. 

In this study, we aimed to apply an advanced clustering method to 
investigate the heterogeneity in the MCI stage using brain features 
extracted from MRIs at the baseline as the input data. Then, a multi- 
modal analysis was conducted to identify the demographics, impor
tant brain characteristics, and plasma protein characteristics of each 
cluster at the baseline. Finally, to gain insights into the relationship 
between important brain characteristics, cognitive performance, and 
plasma protein levels, longitudinal analyses were applied to study the 
long-term changes. Our longitudinal analysis will track the changes in 
brain atrophy and cognitive function over 36 months, aiming to provide 
a comprehensive view of MCI progression and propose new biomarkers 
for prognosis. 

2. Materials and methods 

2.1. Data description 

The data used for this study were retrieved from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI), which is available at www. 
loni.ucla.edu/ADNI. ADNI is a common longitudinal and multi-site 
database for AD. It was launched in 2003 and led by Principal Investi
gator Michael W. Weiner, MD. The main goal of ADNI was to investigate 
the role of serial magnetic resonance imaging (MRI), positron emission 
tomography (PET), other biological markers, and clinical and neuro
psychological assessment in studying the progression of mild cognitive 
impairment (MCI) and early Alzheimer’s disease (AD). 

2.1.1. Subjects 
Subjects selected for this study had to be diagnosed as MCI at base

line and have their blood biomarker information and longitudinal in
formation (MRI and cognitive scores) available on the ADNI database. 
The final data comprised 359 subjects with MCI at baseline, including 
167 cMCI subjects and 192 sMCI subjects. The demographic information 
of the study cohort at baseline is summarized in Table 1. 

2.1.2. MR images 
Imaging data used in this study were the T1-weighted MR scans with 

the MP-RAGE sequences of MCI subjects from ADNI 1 and ADNI GO/2. 
These images were obtained at four different time points, including the 
baseline (the first visit of patients, with n = 359), month 12th (n = 317), 
month 24th (n = 257), and month 36th (n = 200). Various models of MR 
scanners were used for the MRI acquisition, and details of the acquisition 
protocol for the MRI data can be found on ADNI’s website (http://adni. 
loni.usc.edu). 

2.1.3. Plasma biomarkers 
In the beginning, 234 plasma markers from four Biospecimen Dataset 

from ADNI were pre-selected for this study, including 190 plasma bio
markers, plasma NFL, plasma Aβ proteins 40 and 42, and 41 amino 
acids. The methods and protocols used to measure these plasma markers 
are described in “Biomarkers Consortium Plasma Proteomics Project 
RBM Multiplex”, “Blennow Lab ADNI1–2 Plasma neurofilament light 
(NFL) longitudinal (ADNI1, GO, 2)”, “ADMC Duke Biocrates P180 Kit 
Ultra Performance Liquid Chromatography (ADNI1)”, and “UPENN 
Plasma Biomarker Data” (available at http://adni.loni.ucla.edu). After 
removing missing values, the final sample comprised 191 plasma 
markers. 

2.2. Study design 

The overview of the study design is illustrated in Fig. 1. Firstly, the 
sMRIs of 359 MCI subjects are pre-processed with Freesurfer to extract 
310 brain structural features (including 106 vol features, 68 area fea
tures, 68 thickness features, and 68 mean curvature features). Those 310 
features are then normalized in the range from 0 to 1, which were the 

Table 1 
Demographic information of 359 MCI subjects recruited from ADNI. Data is 
illustrated as mean ± standard deviation or number/number.   

cMCI sMCI Total 

N 167 192 359 
Gender (M/F) 101/66 128/64 229/130 
Age 74.6 ± 7.5 74.9 ± 7 74.8 ± 7.3 
Education 15.7 ± 2.9 15.5 ± 3.2 15.6 ± 3.1 
MMSE 26.6 ± 1.7 27.3 ± 1.8 27 ± 1.8 
CDR 0.5 0.5 0.5 
FAQ 5.7 ± 5.1 2.5 ± 3.4 4 ± 4.5 
ADAS-Cog13 21.1 ± 6 17 ± 6.3 18.9 ± 6.5 
ApoE4 (+/-) 112/55 87/105 199/160  
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input data for the clustering step. These normalized features were 
combined with MCI subjects to create a n x m matrix, where n represents 
the MCI subjects, and m represents the brain features. The optimal 
number of clusters is determined by a heuristic method based on gap 
statistics, which is available in the CIMLR (Cancer Integration via Mul
tikernel Learning) package in R [22]. Subsequently, the data matrix was 
analyzed by the CIMLR algorithm and clustered into subgroups. The 
algorithm also exported a list of structural features ranking based on 
their contribution to the clustering analysis. Thirdly, comparisons 
among clusters were done using the top 20 ranked brain features from 
the clustering result, plasma biomarkers, and cognitive scores. The 
correlation tests were conducted to investigate the relationship between 
brain atrophy and plasma proteins. Finally, there was a longitudinal 
analysis to track the changes in cognitive characteristics, brain atrophy 
within 36 months and their linear relationships. Moreover, linear re
lationships between cognitive trajectories and plasma biomarkers also 
were analyzed. 

2.2.1. Data pre-processing 
All the MR images in this study were reconstructed and segmented by 

Freesurfer version 5.3 (“recon-all”), which is documented at http 
://surfer.nmr.mgh.harvard.edu. Freesurfer is an open-source software 
that analyzes the functions, connectivity, and structures of the human 
brain, allowing the extraction of brain imaging features. The processing 
procedure of the software is described in detail in [23,24]. In this study, 
after undergoing pre-processing, 358 brain structural features were 
extracted using Freesurfer. To focus specifically on characterizing at
rophy in individual brain regions, whole-brain and general features 

were excluded. Therefore, the final selection comprised 310 structural 
features, encompassing 106 vol, 68 area, 68 thickness, and 68 mean 
curvature of brain regions based on Freesurfer’s default atlas. The 
complete list of the selected brain features can be found in the Sup
plementary File 1. Then, 310 features are normalized to make all data 
have the same range from 0 to 1. These 310 normalized features were 
used as input for the CIMLR model. 

2.2.2. Clustering method 
CIMLR is an extended clustering method of the SIMLR (Single-cell 

Interpretation via Multi-kernel LeaRning) algorithm [25]. This algo
rithm was chosen to be implemented due to its ability to handle large 
amounts of data, good performance on a variety of datasets, especially 
for highly heterogeneous data, and interpretable results [22]. The 
detailed description of CIMLR is mentioned in [22]. 

In general, CIMLR is based on the multi-kernel learning method, 
which combines kernels for each feature to determine how similar each 
pair of patients is [22]. 310 normalized brain features extracted from 
sMRI at baseline by Freesurfer were used for the CIMLR clustering step. 
The input data, formated as a matrix of N subjects x M brain features, 
was used to construct a series of Gaussian kernels, which are defined 
below: 

K
(
xi, xj

)
=

1
ϵij

̅̅̅̅̅
2π

√ exp

(

−
‖ xi − xj‖

2
2

2ϵ2
ij

)

With xi and xj are respectively the ith and jth rows of the input data 
and ϵ2

ij is the variance. 
Similarly to [22], the optimization problem using Gaussian kernels 

Fig. 1. A study framework for clustering and analyzing the heterogeneities in MCI patients. CIMLR = Cancer Integration via Multi-kernel Learning, MCI = Mild 
cognitive impairment, MMSE = Mini-Mental State Examination, CDR = Clinical Dementia Rating, FAQ = Functional Activities Questionnaire, ADAS-Cog = Alz
heimer’s Disease Assessment Scale-Cognitive Subscale test. 
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to build one subject x subject similarity matrix: 

minS,L,w −
∑

i,j,l
wlKl

(
xi, xj

)
Sij + β‖ S ‖

2
F + γtr

(
LT(IN − S)L

)
+ ρ
∑

l
wllogwl  

subject to LT L = IC,
∑

l
wl = 1,wl ≥ 0,

∑

j
Sij = 1, and Sij ≥ 0.

Here, N is the number of subjects, and C is the number of clusters. i, j, 
and l denote the row (subject), the column (brain feature), and the 
kernel index. S represents the similarity matrix, wl is the weight of each 
Gaussian kernel, IN and IC denote the NxN and CxC identity matrices, β 
and γ are tuning parameters, tr denotes the trace of the matrix, ||S||F 
stands for the Frobenius norm of S, and L is a matrix enforcing C clusters 
on S. 

Each kernel is a measure of patient-to-patient distance, and CIMLR 
learns weights for multiple kernels. Consequently, it combines the 
multiple kernels into a symmetric similarity matrix with C blocks, with 
each block being a set of MCI patients who are highly similar to each 
other. In other words, each block is a cluster and C is the number of 
determined clusters. The number of clusters C has to be determined 
beforehand by a heuristic method [22,25,26]. This method was based on 
the eigenvalues of the Laplacian matrix and the gap statistics approach 
[22,25,26]. 

Finding an indicator matrix Z(R) = XR for a given value of C is the 
goal. X is the matrix of the top eigenvectors of the similarity Laplacian, 
and R is a rotation matrix. 

M[(R)]i = maxj[Z(R)]i,j 

The cost function to be minimized: 

J(R) =
∑

i,j

[Z(R)]2i,j
[M(R)]2i 

The most optimal number of clusters in CIMLR shows the most sig
nificant drop over the set values of C [22,25,26]. In this study, the range 
value of C is 2 - 10 clusters. Subsequently, the similarity matrix is used 
for dimension reduction by applying t-distributed stochastic neighbor 
embedding (t-SNE) and then clustering into subgroups by K-means [27]. 

Features were ranked based on their importance for clustering by the 
Laplacian Score method to measure the contribution of each feature to 
the above similarity matrix. The feature scores were then aggregated by 
the Robust Rank Aggregate method and the final features ranking list 
was exported based on p-values for the features ordered by significance. 
The clustering analysis was performed with R version 4.1.1 using the 
CIMLR package (installing and codebase information, including esti
mating the number of clusters, CIMLR clustering, and feature ranking 
can be found at https://github.com/danro9685/CIMLR). 

2.2.3. Cluster validation 
This study used four validation methods to assess the clustering re

sults: Davies-Bouldin, Silhouette, Pakhira-Bandyopadhyay-Maulik 
(PBM), and Ray-Turi indices [28–31]. These methods serve as internal 
validation by comparing the stability of the clustering results across 
different C values of clusters and with other clustering algorithms. The 
four most common clustering algorithms: K-Means, Hierarchical clus
tering, Partition Around Medoids (PAM), and Clustering Large Appli
cations (CLARA), were chosen to compare. 

The Silhouette Index determines the separation distance between 
clusters using the mean intra-cluster distance and the mean nearest- 
cluster distance [29]. The PBM index is calculated using the distances 
between the data points and their barycenters and the distances between 
the barycenters themselves [30]. Thus, higher values for the Silhouette 
and PBM indices suggest more stable clustering results [29,30]. 

The Davies-Bouldin index represents the average similarity measure 
between each cluster and its most similar cluster, where the ratio of 
within-cluster distances to between-cluster distances determines 

similarity [28]. Lower scores reflect clusters that are more distant and 
less dispersed. The Ray-Turi index calculates the mean squared distances 
of all data points relative to the cluster’s barycenter, considering the 
minimum squared distances between all cluster barycenters [31]. 
Therefore, lower values of the Davies-Bouldin and Ray-Turi indices 
indicate more stable clustering results [28,31]. 

2.3. Cluster comparison 

The main goal of this analysis is to identify the unique characteristics 
of each cluster. To be more specific, the following characteristics were 
compared between each cluster and the rest of the population: (1) 
Demography: Number of subjects (including the number of cMCI and 
sMCI patients), gender ratios, age, years of education, and percentage of 
people carrying APOE4 alleles; (2) Cognitive measurements: Baseline 
values of MMSE, CDR, FAQ, and ADAS-Cog13; (3) Brain atrophy: From 
a list of 310 brain structural features, the top 20 ranked features as 
suggested by CIMLR were analyzed. This selection was based on the 
rationale that a comprehensive analysis of all 310 features would be 
time-intensive and beyond the scope of this study; and (4) Plasma 
biomarkers: 191 plasma proteins and amino acids. The reason that only 
focus on the top 20 is because it would take considerable time and effort 
required to analyze all 310 features comprehensively. Next, the corre
lation between the top 20 ranked brain regions and plasma biomarkers 
was then performed by Spearman correlation function from SciPy Li
brary (the p-values of the correlation tests were corrected by the Holm- 
Bonferroni method). 

2.4. Longitudinal analysis 

The longitudinal analysis was performed in order to track changes 
and trends in the progression of MCI in each cluster from baseline to the 
follow-up 36 months. There are two main types of input data in the 
longitudinal analysis. Firstly, four cognitive tests (MMSE, CDR, FAQ, 
and ADAS-Cog13) of 359 subjects at five different time points: baseline, 
month 6, month 12, month 24, and month 36 were obtained. Secondly, 
MRI data of the same 359 subjects were collected at baseline, month 6, 
month 12, month 24, and month 36. These MR scans were pre-processed 
to obtain the top 20 ranked brain features for longitudinal analysis. 
These two types of data were input to the Simple linear regression at five 
time points (baseline, month 6, month 12, month 24, and month 36). 
From here, the best-fit slope values were extracted to evaluate the pro
gression of MCI in each cluster over the 36 months in terms of cognitive 
performance and brain atrophy. 

Additionally, linear regression was also applied to investigate 
whether baseline values of plasma proteins and brain features at base
line could be indicative of cognitive trajectories over 36 months. This 
linear regression involved correlating the delta (change) in cognitive test 
scores (MMSE, CDR, FAQ, and ADAS-Cog13) from baseline to 36 months 
with the baseline plasma protein levels and brain features. 

The longitudinal analysis was conducted by the Simple linear 
regression tool in GraphPad Prism Software version 8.3.1. Only linear 
relationships having p-value < 0.05 were chosen to be represented by 
GraphPad Prism. Missing values of each feature were handled by the 
pairwise deletion method in the longitudinal analysis. 

2.5. Statistical comparison 

All statistical comparisons in this study, including the demographic, 
cognitive measurements, brain atrophy, and plasma biomarkers com
parisons were performed in R version 4.1.1. For the clinical and cogni
tive characteristics comparisons, Chi-squared test and Kruskal–Wallis 
test were used to analyze differences among means of clusters. More
over, the non-parametric Mann-Whitney-Wilcoxon tests were performed 
to compare the brain atrophy and plasma protein characteristics be
tween each cluster and the rest of the population. The comparisons 
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between each cluster were performed by Kruskal–Wallis test followed by 
Dunn’s post-hoc analysis. All the p-values for multiple testing in this 
study were corrected by the Holm-Bonferroni method to avoid type I 
error. 

3. Results 

3.1. Internal validation of clustering results 

In this study, we applied CIMLR to investigate the heterogeneities 
within the MCI population. Results of the heuristic technique from 
CIMLR proposed in the Methods section to identify the optimal number 
of clusters show a dropping peak at 4 (Fig. 2.A). Therefore, four was the 
most optimal number of clusters for the CIMLR clustering. Table 2 shows 
the internal validation tests for the clustering results with the number of 
clusters ranging from three to ten and with the four most common 
clustering algorithms. Regarding the number of clusters, C = 4 got the 
lowest Davies-Bouldin and Ray-Turi indices and the highest Silhouette 
and PBM indices (Table 2). In terms of the clustering results of other 
algorithms (K-Means, Hierarchical, PAM, CLARA), CIMLR also showed 
more stable results with the lowest of Davies-Bouldin and Ray-Turi and 
the highest Silhouette and PBM indices (Table 3). This result shows that 
the four clusters identified by CIMLR were the most stable result. 

3.2. MCI subtypes and important features identified by cimlr 

The CIMLR algorithm was applied to cluster 310 brain features 
extracted from sMRI of MCI patients at baseline. This analysis resulted in 
the identification of four distinct clusters. These clusters were visualized 
in a two-dimensional space, where each dimension represents a 

component derived through the application of t-SNE in the CIMLR al
gorithm (Fig. 2.B). In this visualization, each data point in each cluster is 
shown in the same color (Fig. 2.B). Cluster 1 contained the largest 
number of subjects (n = 133), while cluster 3 had the smallest number of 
MCI patients (n = 67). Cluster 2 and cluster 4 consisted of 77 and 82 
subjects, respectively. 

CIMLR, through learning weights for multiple kernels, enables the 
determination of feature ranks based on their respective kernel weights. 

Fig. 2. Clustering results of CIMLR visualization. (A) Plot of separation cost (y-axis) suggesting 4 as the most optimal number of clusters. (B) The t-SNE 2D visu
alization of the 4 clusters was retrieved by CIMLR. Each cluster is identified by a color: red - cluster 1, green - cluster 2, blue - cluster 3, purple - cluster 4. (C) Labels of top 
20 brain structural features. Each color in the annotation represents a distinct brain region. 

Table 2 
Clustering internal validation results using CIMLR from 03 to 10 clusters.  

Number of cluster (C) Davies-Bouldin Silhouette PBM Ray-Turi 

3 2.724 0.070 0.838 2.119 
4 2.611 0.071 1.048 2.001 
5 3.055 0.050 0.718 2.767 
6 3.363 0.038 0.444 3.438 
7 3.418 0.033 0.432 3.530 
8 3.595 0.024 0.325 4.682 
9 3.534 0.023 0.323 5.078 
10 3.333 0.019 0.274 3.945  

Table 3 
Clustering internal validation results using CIMLR and four common clustering 
algorithms with the number of clusters is 4.  

Clustering algorithm Davies-Bouldin Silhouette PBM Ray-Turi 

CIMLR 2.611 0.071 1.048 2.001 
K-Means 2.848 0.066 0.865 2.195 
Hierarchical 2.712 0.067 1.144 2.135 
PAM 3.937 0.037 0.827 6.802 
CLARA 3.026 0.050 0.690 2.355  
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In Table 4, the top 20 brain features contributing to the clustering result 
are presented, comprising four volume, two thickness, eight mean cur
vature, and six area features. The complete list of ranked features can be 
found in Supplement File 1. Among the top 20 features, the two most 
crucial ones are located in the Superior Frontal area. Other top features 
are located in Frontal (Right Lateral Orbitofrontal, Right Precentral), 
Temporal (Left Entorhinal, Right Transverse Temporal, Right Middle 
Temporal, Left Superior Temporal), Occipital (Left Lateral Occipital, 
Left Lingual), Cingulate (Right Isthmus Cingulate, Right Rostral Anterior 
Cingulate), and Parietal (Right Inferior Parietal) lobes, Right Para
hippocampus and Right Insula Cortex. In addition, the LH Superior 
Frontal region ranked in the top 20 for volume and thickness, and the LH 
Entorhinal region appeared twice in the top 20 for volume and area. 
Therefore, there are only 18 regions of interest in the most important 
brain features ranked by CIMLR. The labels of these features are shown 
in Fig. 2.C. 

3.3. Demographic and cognitive characteristics 

We next examined the heterogeneities in the demographics and 
cognitive functions within the four identified MCI clusters at the base
line (Table 5). Regarding the demographic data, Cluster 2 has the 
highest percentage of cMCI subjects (n = 44), about 57.14%, followed by 
Cluster 1 (n = 65 cMCI subjects, accounting for 48.88%). The number of 
cMCI patients in Cluster 4 is lowest compared to the other clusters (n =
31 cMCI subjects, accounting for 37.80%). Subjects in cluster 2 have the 
highest average age (mean age: 77.23 ± 6.95 years old), which is about 
five years older than participants in Cluster 4 - the youngest group (p- 
value < 0.0001). For the gender distributions, the number of male 
subjects is more dominant in Cluster 1 and 3. There was no significant 
difference in years of education or distribution of APOE genotype among 
the four clusters. No differences were found when comparing MMSE, 
CDR, and FAQ scores among the four clusters. However, subjects in 
Cluster 2 had higher ADAS - Cog13 scores than those in Cluster 4 did (p- 
value = 0.0013). In conclusion, there are significant differences in the 
age and gender distribution among the four clusters, but they have 
similar patterns in APOE4 genotype prevalence, education, and cogni
tive performance. 

3.4. Atrophy characteristics 

Fig. 3.A showed the comparison of the most important 20 features 
from CIMLR between each cluster and the rest of the population. 
Notably, five features exhibited significant differences across all 

clusters, including the left Superior Frontal Thickness, left Lateral Oc
cipital Volume, right Transverse Temporal Area, right Inferior Parietal 
Area, and right Middle Temporal Area (p-value < 0.05) (Fig. 3.A). 
However, the right Isthmus Cingulate and Insula Mean Curvatures did 
not show significant differences in all clusters (Fig. 3.A). The brain at
rophy comparison for each cluster is depicted in Fig. 3.B, while Fig. 3.C 
visually represents the distinctive atrophy patterns of the four clusters, 
indicated by p-values obtained from the comparison between each 
cluster and the rest of the population. 

Specifically, Cluster 3 exhibited the mildest atrophy pattern in the 
top 20 brain features (Fig. 3.A, Fig. 3.B). In contrast, Cluster 2 displayed 
the most severe atrophy compared to other cluster in nine features 
related to the left Superior Frontal, Temporal, left Entorhinal, right 
Rostral Anterior Cingulate, and left Lingual regions (Fig. 3.A, Fig. 3.B). 
Cluster 4 was notable for the most pronounced atrophy in the left Lateral 
Occipital region and decreased value of the left Precuneus, right Cuneus, 
right Precentral Mean Curvatures (p-value< 0.05) but mildest atrophy in 
the parahippocampal region (Fig. 3.A, Fig. 3.B). Cluster 1 generally had 
mild atrophy patterns similar to Cluster 3 but differed by showing sig
nificant atrophy in the right Parahippocampal region (Fig. 3.A, Fig. 3.B). 
The complete list of p-values resulting from the comparison of the top 20 
brain features between each cluster and the rest of the population, and p- 
values from the Dunn’s comparisons, are available in Supplementary 
File 2. 

3.5. Plasma biomarker characteristics 

At baseline, 51 biomarkers out of 191 proteins in the input data were 
found to be differentially expressed among the four clusters. Fig. 4 
showed the comparisons of the plasma biomarker profiles of each cluster 
to the rest of the population and presented the results of Dunn’s multiple 
comparisons. Cluster 1 had the greatest number of plasma markers with 
distinctive expression patterns (26 proteins) when compared with the 
rest of the population, while Cluster 3 had the lowest number of unique 
plasma markers (13 proteins) (Fig. 4.A). Among the markers, only 
Ferritin and Leptin showed significant differences in all four clusters (p- 
value < 0.01) (FSH, LH, and Testosterone were excluded due to the 

Table 4 
Top 20 structural brain features were retrieved by CIMLR.  

Rank Feature Names 

1 Left Hemisphere Superior Frontal Volume 
2 Left Hemisphere Superior Frontal Thickness 
3 Right Hemisphere Isthmus Cingulate Mean Curvature 
4 Right Hemisphere Lateral Orbitofrontal Mean Curvature 
5 Left Hemisphere Lateral Occipital Volume 
6 Left Hemisphere Entorhinal Volume 
7 Right Hemisphere Transverse Temporal Area 
8 Right Hemisphere Precentral Mean Curvature 
9 Right Hemisphere Rostral Anterior Cingulate Area 
10 Left Hemisphere Superior Temporal Area 
11 Left Hemisphere Precuneus Mean Curvature 
12 Left Hemisphere Frontal Pole Mean Curvature 
13 Left Hemisphere Entorhinal Area 
14 Left Hemisphere Rostral Middle Frontal Mean Curvature 
15 Right Hemisphere Inferior Parietal Area 
16 Right Hemisphere Middle Temporal Area 
17 Right Hemisphere Cuneus Mean Curvature 
18 Right Hemisphere Parahippocampal Thickness 
19 Left Hemisphere Lingual Volume 
20 Right Hemisphere Insula Mean Curvature  

Table 5 
Comparison of demographic and cognitive characteristics among clusters.   

Cluster 1 Cluster 2 Cluster 3 Cluster 4 p-value 
(n = 133) (n = 77) (n = 67) (n = 82) 

Demographic 
sMCI, n 68 33 40 51 NS a 

cMCI, n 65 44 27 31 
Age 76.43 ±

6.65 
77.23 ±
6.95 

72.06 ±
7.2 

72 ± 7.11 <

0.0001b 

Sex (M/F) 116/17 24/53 56/8 30/52 <

0.0001a 

Education, 
years 

16.09 ±
2.54 

15.1 ±
3.33 

15.62 ±
3.22 

15.32 ±
3.33 

NS b 

APOE4+ (%) 54.89 57.14 53.73 56.09 NS a 

Cognitive and memory 
MMSE 26.98 ±

1.75 
26.58 ±
1.59 

26.92 ±
1.84 

27.32 ±
1.83 

NS b 

CDR 0.5 0.5 0.5 0.5 NS b 

FAQ 4.25 ±
4.84 

4.75 ±
5.09 

3.49 ±
3.95 

3.07 ±
3.8 

NS b 

ADAS - Cog 19.11 ±
6.07 

20.64 ± 7 19 ± 6.62 16.86 ±
6.21 

0.003 b 

Abbreviations: cMCI = converted Mild cognitive impairment, sMCI = stable 
Mild cognitive impairment, M = Male, F = Female, APOE4+ = Apolipoprotein 
E4 positive, MMSE = Mini-Mental State Examination, CDR = Clinical Dementia 
Rating, FAQ = Functional Activities Questionnaire, ADAS-Cog = Alzheimer’s 
Disease Assessment Scale-Cognitive Subscale test, NS = Not significant. Data is 
illustrated as mean ± standard deviation or number/number. 

a Chi-square test. 
b Kruskal–Wallis test. 
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difference in gender distributions). 
Cluster 1 is characterized by a significantly lower concentration of 

BDNF, CD40-L, GRO-α, and ENA; and a higher concentration in CgA, CK- 
MB, FABP, Ferritin, Creatinine, TNFR2 and Sarcosine (Fig. 4.A). Among 
four clusters, Cluster 2 had the highest number of statistically significant 
markers, with the highest values of Haptoglobin, Leptin, Adiponectin, 
Sortilin, and Thrombopoietin; and the lowest values of CK-MB, Calci
tonin, and IL-18. More interestingly, the levels of six out of seven amino 
acids (His, Ile, Lys, Trp, Met, Val) in Cluster 2 were the lowest among the 
three. Cluster 3 and 4 shared a similar marker profile and involved the 
least number of AD plasma biomarkers. Nevertheless, while Cluster 3 
has higher value of Calcitonin and the lowest concentration of A2Macro, 
BNP, MIG and TFF3; Cluster 4 presented high concentrations of Factor 
VII, Creatinine, and low value of TM and BLC. 

In the multiple comparisons between subgroups, the total number of 
significantly different markers was 48 (Fig. 4.B). NFL concentration in 
Cluster 2 is higher than that of Cluster 3 (p-value < 0.05). Cluster 1 had a 
higher Cortisol concentration than Cluster 4 (p-value < 0.05) and a lower 
value of Leptin compared to Cluster 2 and Cluster 4 (p-value < 0.001). 
However, no plasma markers had significant differences in all compar
isons. The complete list of p-values resulting from the comparison of 

plasma biomarkers between each cluster and the rest of the population, 
and p-values from the Dunn’s comparisons, are available in Supple
mentary File 3. 

3.6. Interactions between plasma biomarkers and brain regions 

Our next objective was to study the relationships between signature 
plasma biomarker patterns and the differences in brain atrophies of each 
cluster at baseline. All plasma markers having significant differences 
compared with the population (Fig. 4.A) were analysed for the corre
lation with the top 20 brain features to study the relationships between 
signature plasma biomarker patterns and the distinct brain atrophy 
characteristics of each cluster. Fig. 5 displays the significant and 
moderately strong correlations (p-value < 0.05, Rho > 0.3 or < − 0.3) 
between plasma proteins and specific structural brain features. The 
complete list of the correlations, including p-value and rho value, is 
available in Supplementary File 4. Cluster 1 exhibited significant 
correlations between nine protein markers and seven cortical features. 
There were strong negative associations (p-value < 0.001) between 
FABP, SDMA, and NFL with RH Parahippocampal Thickness; and strong 
positive correlations (p-value < 0.001) between NGAL with LH 

Fig. 3. (A-B) Heatmap of (A) The comparison of the top 20 brain features between each cluster and the rest of the population. (B) Dunn’s comparisons of the top 20 
brain features among four clusters. The colours indicate the p-values of the comparisons, and the annotation numbers indicate the mean values of each feature. (C) The 
atrophy patterns of each cluster. The colours represent the p-value of Fig. 3.A. 
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Precuneus Meancurv and Apo-C1 with LH Rostral Middle Frontal 
Meancurv. On the other hand, in Cluster 2, Apo-C1 showed a negative 
correlation with LH Rostral Middle Frontal Meancurv. Moreover, the RH 
Parahippocampal Thickness in Cluster 2 showed positive correlations 
with six amino acid markers (Trp, Ile, Val, Glu, His, Met). Cluster 3 had 
seven proteins significantly correlated (p-value < 0.001) with the brain 
features, four of which displayed a positive correlation, while the others 
showed an inverse relationship with the markers. In Cluster 4, seven out 
of eight protein markers presented negative correlations with RH Pre
central Meancurv (p-value < 0.05), with the most significant proteins 
being FABP and NGAL (p-value < 0.001) (Fig. 5). 

3.7. Longitudinal analyses of cognitive characteristics 

To assess the rate of disease progression, a longitudinal evaluation 

from baseline to 36-month follow-up was conducted based on cognitive 
and neuropsychological performance, by using four tests: MMSE, CDR, 
FAQ, and ADAS- Cog-13 (Fig. 6.A).Table 6 displays the Slope values of 
the linear regressions from Fig. 6.A. Cluster 2 showed the highest rate of 
cognitive decline, shown by the peak slope values in all tests, followed 
by Cluster 1, with the second highest values in the MMSE, CDR, and FAQ 
scores. Clusters 3 and 4 both showed a mild cognitive decline with 
similar slopes across four tests, but cluster 4 displayed a slightly milder 
decline. 

Longitudinal correlations between the four cognitive test results and 
the plasma proteins were analyzed over 36 months and shown in Fig. 6. 
B. Only significant correlations were reported. There were five protein 
markers that could possibly be indicative of the cognitive decline rate in 
MCI patients. Specifically, higher concentrations of plasma NFL and 
Cortisol, in particular, may be linked with a faster cognitive decline rate. 

Fig. 4. Heatmap of the comparisons of plasma protein characteristics among clusters. (A) The comparison between each cluster and the rest of the population. (B) 
Dunn’s multiple comparisons. The heatmap colours indicate the p-values of the comparisons, and the annotation numbers in Figure A indicate the mean concen
trations of each protein (pre-processed by ADNI). Abbreviations: Alpha-2-Macroglobulin = A2Macro, Apolipoprotein C-I = Apo C-I Brain-Derived Neurotrophic 
Factor = BDNF, B Lymphocyte Chemoattractant = BLC, Brain Natriuretic Peptide = BNP, CD40 Ligand = CD40-L, Chromogranin-A = CgA, Creatine Kinase-MB = CK- 
MB, Epithelial-Derived Neutrophil-Activating = ENA, Fatty Acid-Binding Protein-heart = FABP, FASLG Receptor = FAS, Ferritin = FRTN, Follicle-Stimulating 
Hormone = FSH, Growth-Regulated alpha protein = GRO-alph, Hepatocyte Growth Factor = HGF, Immunoglobulin A = IgA, Interleukin-18 = IL-18, Luteinizing 
Hormone = LH, Macrophage-Derived Chemokine = MDC, Monokine Induced by Gamma Interferon = MIG, Neutrophil Gelatinase-Associated Lipocal = NGAL, 
Prostatic Acid Phosphatase = PAP, Pulmonary and Activation-Regulated Chemo = PARC, Platelet-Derived Growth Factor BB = PDGF-BB, Sex Hormone-Binding 
Globulin = SHBG, T-Cell-Specific Protein RANTES = RANTES, Thyroxine-Binding Globulin = TBG, Trefoil Factor 3 = TFF3, TM = Thrombomodulin, Tumor Ne
crosis Factor Receptor-Like 2 = TNFR2, Transthyretin = TTR, Vascular Endothelial Growth Factor = VEGF, Symmetric dimethylarginine = SDMA. 
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In contrast, patients with higher Hepatocyte Growth Factor (HGF), B 
Lymphocyte Chemoattractant (BLC), and Interleukin-18 (IL-18) were 
likely to have slower decreases in cognitive functions (Fig. 6.B). 

3.8. Longitudinal analyses of brain atrophy characteristics 

Longitudinal changes in brain atrophy were investigated by tracking 
the top 20 brain features in three years, and only statistically significant 
results (p-value < 0.05) were chosen to be represented in Fig. 7.A. Then, 
features with significant changes were further examined for correlations 
with cognitive test result changes (Fig. 7.B). Table 7 shows the Slopes of 
the linear regression analyses in four clusters in three-year-time. There 
were six features showing consistent decreasing trends in all four clus
ters (Fig. 7.A and Table 6). Amongst the other features, LH Lateral Oc
cipital and Superior Frontal volumes showed the steepest degeneration 
in Cluster 3 (Lateral Occipital - slope = − 18.5 and Superior Frontal - 
slope = - 35.5). 

Cluster 3 had the most rapid atrophy pattern, with significantly 
decreasing trends in five out of seven cortical features and the highest 
negative slope in the LH Superior Frontal, LH Lateral Occipital area, and 
LH Entorhinal Volume. Cluster 2 decreasing trends were only significant 
in the LH Entorhinal Volume, however, the LH Superior Frontal Thick
ness showed the second highest negative slope compared to the other 
clusters. On the other hand, the cognitive trajectory in the MCI popu
lation is mostly inversely correlated with nine brain features (Fig. 7.B). 
Amongst them, LH Lateral Occipital Volume, LH Entorhinal Volume, RH 
Parahippocampal Thickness, and RH Inferior Parietal Area showed the 
most significant correlation with cognitive function test scores and 
hence could be indicative of cognitive decline. 

4. Discussion 

In this study, we employed the CIMLR clustering algorithm to 
investigate the heterogeneity of the MCI population using structural MRI 
from the ADNI database. We used FreeSurfer to extract a total of 310 
morphometric features from T1-weighted MRI (including 106 vol, 68 
area, 68 thickness, and 68 mean curvature features) of 359 MCI subjects. 
Then, the CIMLR clustered patients into four subgroups and also ranked 
these 310 features based on their contribution to the clustering process. 
Four clusters were then examined for their differences in cognitive 
scores, top 20 important brain features, proteomic profiles, and their 
corresponding longitudinal correlations at baseline and 36 months 
follow-up. The heterogeneities in atrophy patterns and biological pro
cesses of these four clusters were examined through the differences in 
morphometric sMRI features and plasma proteins. At the baseline, all 
subgroups presented non-significant differences in education levels, 
APOE4 prevalence, and cognitive scores, including MMSE, CDR, FAQ, 
and ADAS-CoG (Table 5). Despite this initial similarity, we identified 
four distinct brain atrophy patterns based on the MRI features, which 
correspond to different plasma biomarkers and cognitive degeneration 
rates for both cross-sectional and longitudinal data (Table 8). 

In general, Clusters 1 and 2 displayed the highest number of con
verter MCI with an older average age above 76 compared to Cluster 3 
and 4. More specifically, Cluster 2 stood out with the highest AD risk due 
to the most severity of brain atrophy at baseline, as evidenced by severe 
cortical shrinkages in the AD-related regions, including the temporal, 
entorhinal, rostral anterior cingulate, and lingual regions (Fig. 3) [32, 
33], and the fastest cognitive decline (Fig. 6.A). Cluster 1, despite having 
the second to highest average age, had moderate brain shrinkage and a 
similar atrophy pattern to Cluster 3 (Fig. 3). To delineate the 

Fig. 5. Heatmap depicting the correlations between the top 20 brain features and unique plasma protein biomarkers of each cluster. The heatmap colours and the 
annotation numbers depict the Rho values. The color of the square borders indicates the p-value of the correlation between each marker and brain region. 
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heterogeneous properties between the clusters, we then analyzed the 
atrophy pattern and plasma protein expression within each group. 

4.1. Exploring heterogeneity by multi-faceted analysis of brain features 

Although numerous studies on MCI heterogeneity have focused on 
analyzing volume-based or gray matter features from neuroimaging 
data, emerging evidence has suggested that other morphometrics such 
as curvature, area, or thickness of the cortical regions and subregions 
could provide benefits over measuring volumes [34–36]. In this study, 
we combined multiple types of structural MRI features extracted from 
FreeSurfer, including volume, thickness, area, and curvature of different 
brain regions to cluster the MCI population. This strategy allows us to 
employ a multi-faceted analysis of atrophy, as each type of feature 
provides a distinct perspective on assessing the extent of atrophy. For 
instance, previous research suggests that mean curvature features can 

indicate white matter atrophy, with higher mean curvature values in a 
brain region corresponding to greater severity of white matter damage 
[37,38]. By incorporating these diverse features, we can gain a more 
nuanced understanding of the atrophy patterns within the MCI 
population. 

4.2. Brain atrophy patterns of high-risk clusters 

Using the features from FreeSurfer, our analysis revealed four 
distinct MRI-based regional atrophy patterns (Fig. 3). The top 20 MRI- 
derived features identified by CIMLR in our study reflected the brain 
regions that were previously reported to correlate with AD progression 
[39–42]. Moreover, the heterogeneities in these top 20 features 
(Table 4) were also documented in precedent research [15,17,43,44]. 

In more detail, Cluster 2 showed the most severe atrophy with a 
diffuse pattern and severe brain atrophy in the temporal, frontal lobes, 
and the entorhinal cortex. This pattern closely mirrors the progression of 
tau pathology as described in the Braak staging system. According to this 
system, the initial stages of atrophy are observed in the entorhinal re
gion and midbrain areas, from where it progressively extends to the 
frontal and temporal lobes, impacting the parietal and occipital lobes 
[45,46]. These atrophy were the most severe in four cortical areas that 
overlap with typical AD cluster in other heterogeneity research [47–49], 
including Frontal, Precuneus, Temporal, Lateral Occipital regions, and 
Entorhinal cortex. For instance, the Li study’s atrophy map of AD pa
tients identified major brain atrophy in the temporoparietal, cingulate 
gyrus, precuneus, and occipital regions, while its frontal variant 
involved cortical shrinkage in the frontal cortical areas. 

On the other hand, compared to the Whitwell study, the atrophy 
pattern of Cluster 2 was a mix between the typical AD group and the 
limbic-predominant group, where affected areas included the temporal, 

Fig. 6. The longitudinal analyses over 36 months of cognitive performance among four clusters. (A) Linear regression graphs indicated the longitudinal analysis of 
cognitive characteristics from the Baseline stage to month 36th among clusters. (B) The linear relationships between the changes of cognitive tests and 
plasma proteins. 

Table 6 
Linear regression slopes of four cognitive tests from baseline to 36 months.  

Cognitive test Cluster 1 Cluster 2 Cluster 3 Cluster 4 

MMSE - 0.08876*** - 0.09677*** - 0.06812** - 0.06362** 
CDR 0.007413*** 0.01127*** 0.006979*** 0.004085** 
FAQ 0.1795*** 0.2396*** 0.1766*** 0.1573*** 
ADAS-Cog13 0.1622*** 0.2353*** 0.1493* 0.1697** 

Abbreviations: MMSE = Mini-Mental State Examination, CDR = Clinical De
mentia Rating, FAQ = Functional Activities Questionnaire, ADAS-Cog = Alz
heimer’s Disease Assessment Scale-Cognitive Subscale test. 

* p-value <0.05. 
** p-value <0.01. 
*** p-value <0.001. 
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frontal lobes, and the entorhinal cortex [46]. From the discussed ex
amples, our results suggested the pattern of atrophy in Cluster 2 could be 
indicative of typical AD progression, which is strengthened by its worst 
cognitive decline after 36 months and well-aligned with previous 
studies. 

Cluster 4 presented an anatomical atrophy similar to Cluster 2 but 
with lesser degeneration, but this cluster has the best thickness of the 
right Parahippocampus. During AD development and progression, the 
Hippocampal and its related structures such as the Parahippocampal 
regions are the earliest and most severely affected brain regions. In 

Fig. 7. The longitudinal analyses over 36 months of the statistically significant brain features selected from the top 20 among four clusters. (A) Linear regression 
graphs indicated the longitudinal analysis of brain feature changes from baseline to month 36th. (B) The linear relationships between the changes of cognitive tests 
and brain atrophy. 

Table 7 
Linear regression slopes of brain atrophy with significant change in 3-year-time.  

Features Cluster 1 Cluster 2 Cluster 3 Cluster 4 

RH Middle Temporal Area ¡2.377 − 2.44 ¡5.469* − 3.457** 
RH Isthmus Cingulate Meancurv 3.083 £ 10¡5 1.344 × 10− 6 − 4.189 × 10− 5 ¡9.425 £ 10¡5* 

LH Superior Frontal Thickness − 0.00184** ¡0.00167 − 0.001784 ¡0.002328** 
RH Parahippocampal Thickness ¡0.002861* − 0.003112 ¡0.004851** − 0.003785* 
LH Entorhinal Volume − 5.096* − 5.698* ¡6.097* ¡3.466 
LH Lateral Occipital Volume ¡5.685 − 6.39 ¡18.5* − 13.73* 
LH Superior Frontal Volume − 19.07* ¡14.53 ¡35.55** − 21.64** 

Abbreviations: LH: Left hemisphere, RH: Right hemisphere. 
* p-value <0.05. 
** p-value <0.01 

*** p-value <0.001. 
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contrast, most cortical shrinkages in Cluster 4 were in the Occipital and 
the Precuneus regions, which are not normally observed in AD atrophy 
patterns but in Posterior Cortical Atrophy, a less common form of de
mentia. Therefore, these results implied a lower incident risk for AD in 
Cluster 4 as this cluster did not exhibit atrophy in AD-related brain re
gions, and suggested mixed dementia, where cognitive decline is 
concurrently caused by other types of dementia, such as Posterior 
Cortical Atrophy. 

Compared to them, Cluster 1 and 3 had the mildest brain atrophy 
with similar morphometric values in 10 out of the top 20 brain features, 
specifically the superior frontal, superior temporal, lingual, and occipi
tal regions. Despite sharing great atrophy similarity, the cortical damage 
in the Lingual and Temporal areas of Cluster 3 was significantly less 
severe than in Cluster 1, suggesting a more temporal and occipital- 
dominant atrophy in Cluster 1 compared to Cluster 3. On the other 
hand, compared to the Ten Kate study, Cluster 3 and 1 displayed a 
different class exhibiting predominant medial-temporal and parieto- 
occipital atrophy [4]. On the other hand, longitudinal analysis showed 
a negative correlation between the Left Lateral volume, Entorhinal 
volume, RH Parahippocampal thickness, Inferior Parietal area, and the 
cognitive decline trajectory of all four MCI subtypes, reflecting on the 
worsening cognitive scores. These findings align with a previous study, 
which found that the decrease in volume of the temporal and parietal 
lobes correlated with the severity of cognitive impairment and the 
development of neurodegeneration [41,50,51]. 

In brief, our study identified four different atrophy patterns based on 
sMRI morphometric features obtained from FreeSurfer with Cluster 4 
resembling typical AD atrophy, Cluster 2 as non-AD mix atrophy, and 
Cluster 1 and 3 as the mildest MCI subgroups. Based on these results, we 
further addressed the anatomical variation of cortical degeneration in 
MCI patients, particularly for subgroups with equivalent levels of brain 
atrophy and similar demographic profiles at baseline. 

4.3. Cardiovascular and metabolic mechanisms contributing to AD 
progression 

After clustering the MCI populations into four groups with hetero
geneous atrophy profiles, we examined the variation in plasma marker 
expression. Among the four subgroups, Cluster 2 has the most significant 
number of AD-related indicators, which were inversely correlated with 
cognitive outcomes. These biomarkers are involved in various degen
eration pathways, including cardiovascular diseases (CVDs), amino 
acids deficit, and lipid metabolisms. Abnormally elevated levels of 
Leptin, Adiponectin, and CKMB indicate the presence of CVDs and car
diac diseases that can traverse to the nervous system damaging the 
neuronal networks and synapses [52–54]. Moreover, we observed a 
positive relationship between the amino acids level and the Para
hippocampal atrophy in Cluster 2, consistent with previous studies 
linking amino acid metabolism to AD and cognitive trajectory [55,56]. 
Notably, tryptophan and its intermediate metabolites can modulate AD 
development by regulating neuro-inflammation, amyloid-beta synthe
sis, as well as causing sleep disorders that affect amyloid-beta clearance 

[57,58]. Abnormal levels of these markers suggested a multi-factor 
mechanism contributing to AD development in Cluster 2, explaining 
the cluster’s poorest cognitive scores and severe atrophy. 

4.4. Protective biological markers mitigate AD progression 

Compared to Cluster 2, despite having a similar average age, Cluster 
1 showed a lower incidence of cMCI and less severe brain atrophy 
compared to Cluster 2, indicating that age alone does not determine the 
severity of disease progression. This variation may be attributed to the 
presence of protective biological markers, such as TNFR2, which acts as 
an immune modulator with strong anti-inflammatory effects, and 
therefore causes protective effects on the oligodendrocytes and neurons, 
promoting cell survival [59,60]. Cluster 1 also displayed low levels of 
BDNF and CD40 Ligand, which are involved in inflammation pathways 
as indicators and modulators [61,62]. These markers may protect 
Cluster 1 from inflammatory damage, which is considered a major 
mechanism leading to AD. Conversely, Cluster 1 showed high levels of 
FABP and Ferritin. While Ferritin is known for the storage of iron ions, 
FABP is a lipid-binding protein that facilitates the intracellular trans
portation of fatty acids into the nerve cells, which might pose a risk for 
AD development [63,64]. However, the negative impact of these factors 
seems to be mitigated by the anti-inflammatory markers, resulting in a 
slower progression of degeneration within Cluster 1 due to a balance 
between harmful and protective mechanisms, particularly involving 
iron deposition and lipid metabolism abnormalities in the central ner
vous system (CNS). 

Clusters 3 and 4 displayed a similar marker profile, particularly with 
the lowest level of MIG (CXCL9). It’s important to note that Cluster 3 
displayed the mildest atrophy at baseline and a mild cognitive decline 
over time. This align with previous study, MIG, particularly circulating 
MIG, level was high in AD patients and suggestively associated with a 
higher risk of AD [65–67]. This may be related to MIG is present in the 
Central Nervous System and is related to pro-inflammation and endo
thelial dysfunction [68]. 

4.5. Potential plasma biomarkers for early diagnosis 

Longitudinal analyses of cognitive performance revealed increased 
levels of Cortisol and NFL may link with a faster cognitive decline; and 
higher levels of Hepatocyte Growth Factor (HGF), B lymphocyte che
moattractant (BLC), and interleukin-18 (IL-18) correlate with slower 
decreases in cognitive functions. This is consistent with previous 
research that a long-term increase of Cortisol and NFL was associated 
with a faster progression of AD, and suggested the role of these two 
proteins as potential preclinical markers for AD [69–72]. On the other 
hand, higher levels of HGF in CSF at baseline can be indicative of a faster 
cognitive decline in both MCI and AD patients and associated with Small 
vessel disease dementia [73,74]. However, the HGF/c-Met-receptor 
system activation is reported to be associated with various biological 
processes including mitogenesis, motogenesis, morphogenesis, stem cell 
differentiation, and neurogenesis. These processes have the potential to 

Table 8 
Summary of the heterogeneity of four proposed MCI clusters.   

Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Demographics Old age group Old age group Young age 
group 

Young age group 

Cognitive 
decline 

Slow Fastest Slow Slowest 

Brain atrophy Mild atrophy Most severe atrophy in AD-related regions, including the temporal, 
entorhinal, rostral anterior cingulate, and lingual regions 

Mildest 
atrophy 

Quite severe atrophy 
More temporal and 
occipital dominant atrophy 

Similar pattern to C2 
Parahippocampus: thickest 

Plasma 
biomarkers  

- High TNFR2  - High Leptin, Adiponectin, and CKMB Low MIG Low Thrombomodulin and B 
Lymphocyte Chemoattractant  - - Low BDNF and CD40L  - Positive correlation: amino acids and Parahippocampal atrophy  

- Low tryptophan  
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prevent neuroinflammation, oxidative stress-induced damage, neuro
toxicity, which can halt the progression of AD [75,76]. Interestingly, 
another study demonstrated that the expression of IL-18, which is 
associated with neuroinflammatory processes, reaches its peak during 
the MCI stage and decreases during the AD stage, aligning with the 
findings of our study [77]. However, there is limited evidence sup
porting the role of BLC in AD pathology. In conclusion, HGF was further 
confirmed as a potential treatment strategy for AD and dementia, while 
Cortisol and NFL were identified as potential prognostic biomarkers for 
assessing the severity of cognitive decline. Further investigation is 
needed to understand the patterns of IL-18 expression in MCI converted 
to AD. 

4.6. Limitations and future directions 

Our study had several limitations owing to its limited sample size and 
longitudinal data availability. Firstly, the sample size in the study was 
limited as we aimed to characterize both MRI-based brain atrophy and 
plasma protein profile, so only subjects with both information accessible 
were included. Secondly, there were cases of missing data, particularly 
follow-up sMRI after 36 months, because of the high drop-off and 
mortality rate as the disease progressed in high-risk patients. Conse
quently, those limitations may lead to large standard deviations and 
insignificance in statistical analysis. Thirdly, because of the complexity 
of the study design and the impracticality of thoroughly analyzing all 
310 features, this study only focused on the top 20 brain features, which 
did not include the medial temporal region - an important region for AD. 
Therefore, the future analysis could expand our study scope and include 
more brain regions in the CIMLR clustering step, and increase the sample 
size both regionally and globally to study the MCI heterogeneity more 
comprehensively. Although there had been numerous research devel
oping blood tests and exploring potential markers for the diagnosis of 
AD, yet, the efficacy of these blood markers varied across studies within 
the same population and ethnic community [78–80]. One possible 
confounding factor that causes these variations is the disease hetero
geneity and even its precedent stage - MCI. The findings and pipeline we 
proposed in this study can be employed for similar studies on other 
datasets or larger populations to find the characteristic biomarker panels 
that can be used for early AD screening and diagnosis. Therefore, taking 
into account this heterogeneity of the MCI stage in biomarkers explo
ration study could resolve the current limitation and inconsistency of 
previous research, and further enhance AD early diagnosis and prog
nosis accuracy. 

5. Conclusion 

This study identified four different clusters in the MCI population by 
the data-driven clustering approach based on imaging data. Although 
four clusters had the same cognitive performance with the traditional 
diagnostic methods at the baseline, these clusters displayed distinct 
brain atrophy, plasma biomarkers, and cognitive progression charac
teristics. Parahippocampal atrophy was found to be positively correlated 
with cognitive impairment and amino acid levels. The study also iden
tified several factors that can alleviate or worsen the progression of the 
MCI including lipid and amino acid metabolism, cardiovascular dis
eases, inflammatory modulators, and glial activations. These findings 
suggest that the current clinical practice is not sensitive to detect the 
early changes of AD. The longitudinal analyses showed the potential of 
HGF as a slow cognitive impairment marker; Cortisol and NFL as 
prognosis markers for aggressive MCI progression. These findings pro
vide valuable insights for future research, contributing to the accurate 
diagnosis and precision medicine for MCI progression and AD. 

Statement of significance 

Current treatments fail to halt the progression of Alzheimer’s disease 

(AD) due to the clinical, pathological, and morphological heterogene
ities of the AD spectrum. Emerging evidence has suggested that these 
heterogeneous characteristics can be rooted back to the early stages of 
AD - mild cognitive impairment (MCI). Addressing these heterogeneities 
at the MCI stage when the disease has not reached an irreversible status 
can allow the development of early and timely interventions to manage 
AD more effectively. Therefore, in this study, we aim to investigate the 
heterogeneity of the MCI population based on structural brain imaging 
using clustering methods. This method will cluster the MCI population 
into subgroups, which are called clusters. The heterogeneous charac
teristics of each cluster were then analyzed in terms of cognitive tra
jectories, brain atrophy, and plasma biomarkers at the baseline and after 
longitudinal changes. We identified four clusters with distinct progres
sion rates and proteomic profiles using the CIMLR algorithm, suggesting 
potential markers and approaches for personalized AD diagnosis and 
management. 
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